論文の概要: An efficient, accurate, and interpretable machine learning method for computing probability of failure
- arxiv url: http://arxiv.org/abs/2601.21089v1
- Date: Wed, 28 Jan 2026 22:21:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.46209
- Title: An efficient, accurate, and interpretable machine learning method for computing probability of failure
- Title(参考訳): 故障確率の計算のための効率的・正確・解釈可能な機械学習手法
- Authors: Jacob Zhu, Donald Estep,
- Abstract要約: 本稿では,Penalized Profile Support Vector Machineと呼ばれる新しい機械学習手法を提案する。
この方法は、コンピュータモデルの評価回数を最小限に抑えるように設計されている。
競合種に対するロトカ-ボルテラモデルを用いて生存確率を推定するために本手法を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel machine learning method called the Penalized Profile Support Vector Machine based on the Gabriel edited set for the computation of the probability of failure for a complex system as determined by a threshold condition on a computer model of system behavior. The method is designed to minimize the number of evaluations of the computer model while preserving the geometry of the decision boundary that determines the probability. It employs an adaptive sampling strategy designed to strategically allocate points near the boundary determining failure and builds a locally linear surrogate boundary that remains consistent with its geometry by strategic clustering of training points. We prove two convergence results and we compare the performance of the method against a number of state of the art classification methods on four test problems. We also apply the method to determine the probability of survival using the Lotka--Volterra model for competing species.
- Abstract(参考訳): 本稿では,システム動作のコンピュータモデルにおけるしきい値条件によって決定される複雑なシステムの故障確率の計算のためのガブリエル編集セットに基づく,Pinalized Profile Support Vector Machineと呼ばれる新しい機械学習手法を提案する。
本手法は,確率を決定する決定境界の幾何学を保ちながら,コンピュータモデルの評価回数を最小限に抑えるように設計されている。
境界決定失敗に近い点を戦略的に割り当てる適応的なサンプリング戦略を採用し、訓練点の戦略的クラスタリングによってその幾何学と整合した局所線形代理境界を構築する。
2つの収束結果を証明し、4つのテスト問題に対する最先端の分類法と比較する。
また, 競合種に対するロトカ-ボルテラモデルを用いて生存確率を推定するために本手法を適用した。
関連論文リスト
- Transfer Learning for Classification under Decision Rule Drift with Application to Optimal Individualized Treatment Rule Estimation [50.34670342434884]
本研究では,ベイズ決定規則による後方ドリフトのモデル化手法を提案する。
穏やかな規則性条件の下では、推定器の整合性を確立し、リスク境界を導出する。
本稿では,最適な個別化処理ルールの推定に適応させることにより,本手法の幅広い適用性について述べる。
論文 参考訳(メタデータ) (2025-08-28T16:03:06Z) - An In-Depth Examination of Risk Assessment in Multi-Class Classification Algorithms [10.008264048021076]
リスク評価問題の解法における各種手法の性能を数値的に解析する。
我々の共形予測に基づくアプローチは、モデルとデータ分散非依存であり、実装が簡単であり、合理的な結果を提供する。
論文 参考訳(メタデータ) (2024-12-05T14:03:16Z) - Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
我々は回帰アルゴリズムとモデル予測の周囲に定義された区間内に存在する真のラベルの確率を計算するリスク評価タスクに焦点をあてる。
そこで,本研究では,正のラベルを所定の確率で含むことが保証される予測区間を提供する共形予測手法を用いてリスク評価問題を解決する。
論文 参考訳(メタデータ) (2023-10-05T13:57:24Z) - Learning from a Biased Sample [2.7728441305894447]
本稿では,テスト分布のファミリーで発生する最悪のリスクを最小限に抑える決定ルールの学習方法を提案する。
本研究では,健康調査データからメンタルヘルススコアの予測を行うケーススタディにおいて,提案手法を実証的に検証した。
論文 参考訳(メタデータ) (2022-09-05T04:19:16Z) - Reliability analysis of discrete-state performance functions via
adaptive sequential sampling with detection of failure surfaces [0.0]
本稿では,レアイベント確率推定のための新しい効率的でロバストな手法を提案する。
この手法は、複数の障害タイプの確率を推定することができる。
この情報に対応して、推定確率の精度を高めることができる。
論文 参考訳(メタデータ) (2022-08-04T05:59:25Z) - Hybrid Method Based on NARX models and Machine Learning for Pattern
Recognition [0.0]
本研究は,機械学習とシステム識別の方法論を統合した新しい手法を提案する。
本手法の効率は,機械学習におけるケーススタディにより検証され,古典的分類アルゴリズムと比較して絶対的な結果が得られた。
論文 参考訳(メタデータ) (2021-06-08T00:17:36Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
本稿では,POMCPポリシーをトレースを検査して分析する手法を提案する。
提案手法は, 政策行動の局所的特性を探索し, 予期せぬ決定を識別する。
我々は,POMDPの標準ベンチマークであるTigerに対するアプローチと,移動ロボットナビゲーションに関する現実の問題を評価した。
論文 参考訳(メタデータ) (2020-12-23T15:09:28Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。