論文の概要: Just Ask: Curious Code Agents Reveal System Prompts in Frontier LLMs
- arxiv url: http://arxiv.org/abs/2601.21233v1
- Date: Thu, 29 Jan 2026 03:53:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.554744
- Title: Just Ask: Curious Code Agents Reveal System Prompts in Frontier LLMs
- Title(参考訳): コードエージェントがフロンティアのLLMでシステムプロンプトを発見(動画)
- Authors: Xiang Zheng, Yutao Wu, Hanxun Huang, Yige Li, Xingjun Ma, Bo Li, Yu-Gang Jiang, Cong Wang,
- Abstract要約: textbftextscJustAskは,インタラクションのみで効果的な抽出戦略を自律的に発見するフレームワークである。
これは、アッパー信頼境界に基づく戦略選択と、原子プローブと高レベルのオーケストレーションにまたがる階層的なスキル空間を用いて、オンライン探索問題として抽出を定式化する。
この結果から,現代のエージェントシステムにおいて,システムプロンプトは致命的ではあるがほぼ無防備な攻撃面であることがわかった。
- 参考スコア(独自算出の注目度): 65.6660735371212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous code agents built on large language models are reshaping software and AI development through tool use, long-horizon reasoning, and self-directed interaction. However, this autonomy introduces a previously unrecognized security risk: agentic interaction fundamentally expands the LLM attack surface, enabling systematic probing and recovery of hidden system prompts that guide model behavior. We identify system prompt extraction as an emergent vulnerability intrinsic to code agents and present \textbf{\textsc{JustAsk}}, a self-evolving framework that autonomously discovers effective extraction strategies through interaction alone. Unlike prior prompt-engineering or dataset-based attacks, \textsc{JustAsk} requires no handcrafted prompts, labeled supervision, or privileged access beyond standard user interaction. It formulates extraction as an online exploration problem, using Upper Confidence Bound--based strategy selection and a hierarchical skill space spanning atomic probes and high-level orchestration. These skills exploit imperfect system-instruction generalization and inherent tensions between helpfulness and safety. Evaluated on \textbf{41} black-box commercial models across multiple providers, \textsc{JustAsk} consistently achieves full or near-complete system prompt recovery, revealing recurring design- and architecture-level vulnerabilities. Our results expose system prompts as a critical yet largely unprotected attack surface in modern agent systems.
- Abstract(参考訳): 大きな言語モデル上に構築された自律的なコードエージェントは、ツールの使用、長距離推論、セルフダイレクトインタラクションを通じて、ソフトウェアとAI開発を再構築している。
しかし、この自律性は、これまで認識されていなかったセキュリティリスクをもたらす:エージェント間相互作用は、LLM攻撃面を根本的に拡張し、モデル動作をガイドする隠されたシステムプロンプトの体系的な探索と回復を可能にする。
我々は,システムプロンプト抽出を,コードエージェントに固有の創発的脆弱性として認識し,対話のみで効果的な抽出戦略を自律的に発見する自己進化型フレームワークである \textbf{\textsc{JustAsk}} を提示する。
以前のプロンプトエンジニアリングやデータセットベースの攻撃とは異なり、 \textsc{JustAsk}は手作りのプロンプト、ラベル付き監督、通常のユーザーインタラクション以上の特権アクセスを必要としない。
これは、アッパー信頼境界に基づく戦略選択と、原子プローブと高レベルのオーケストレーションにまたがる階層的なスキル空間を用いて、オンライン探索問題として抽出を定式化する。
これらのスキルは、不完全なシステム命令の一般化と、有用性と安全性の間の固有の緊張を生かしている。
複数のプロバイダにまたがるブラックボックスの商用モデルで評価された \textsc{JustAsk} は、設計レベルの脆弱性とアーキテクチャレベルの脆弱性を繰り返す、完全なあるいはほぼ完全なシステムプロンプトリカバリを一貫して達成している。
この結果から,現代のエージェントシステムにおいて,システムプロンプトは致命的ではあるがほぼ無防備な攻撃面であることがわかった。
関連論文リスト
- The Why Behind the Action: Unveiling Internal Drivers via Agentic Attribution [63.61358761489141]
LLM(Large Language Model)ベースのエージェントは、カスタマーサービス、Webナビゲーション、ソフトウェアエンジニアリングといった現実世界のアプリケーションで広く使われている。
本稿では,タスク結果に関係なく,エージェントの動作を駆動する内部要因を識別する,テキスト汎用エージェント属性のための新しいフレームワークを提案する。
標準ツールの使用やメモリ誘起バイアスのような微妙な信頼性リスクなど、さまざまなエージェントシナリオでフレームワークを検証する。
論文 参考訳(メタデータ) (2026-01-21T15:22:21Z) - The Evolution of Agentic AI in Cybersecurity: From Single LLM Reasoners to Multi-Agent Systems and Autonomous Pipelines [0.0]
サイバーセキュリティはエージェントAIのアーリーアダプターの1つになった。
この調査は、サイバーセキュリティにおけるエージェントAIの5世代分類を提示する。
論文 参考訳(メタデータ) (2025-12-07T05:10:16Z) - The Trojan Knowledge: Bypassing Commercial LLM Guardrails via Harmless Prompt Weaving and Adaptive Tree Search [58.8834056209347]
大規模言語モデル(LLM)は、有害な出力を誘導するために安全ガードレールをバイパスするジェイルブレイク攻撃に弱いままである。
CKA-Agent(Correlated Knowledge Attack Agent)は、ターゲットモデルの知識基盤の適応的木構造探索としてジェイルブレイクを再構成する動的フレームワークである。
論文 参考訳(メタデータ) (2025-12-01T07:05:23Z) - ATAG: AI-Agent Application Threat Assessment with Attack Graphs [23.757154032523093]
本稿では,Attack Graphs (ATAG) を用いたAIエージェントアプリケーションThreatアセスメントを提案する。
ATAGは、AIエージェントアプリケーションに関連するセキュリティリスクを体系的に分析するために設計された、新しいフレームワークである。
マルチエージェントアプリケーションにおけるAIエージェント脅威の積極的な識別と緩和を容易にする。
論文 参考訳(メタデータ) (2025-06-03T13:25:40Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)に適したシステムレベルの異常検出フレームワークを提案する。
本稿では,エージェント間相互作用を動的実行グラフとしてモデル化し,ノード,エッジ,パスレベルでの意味的異常検出を可能にするグラフベースのフレームワークを提案する。
第2に,セキュリティポリシとコンテキスト推論に基づくMAS実行の監視,解析,介入を行うLLMによる監視エージェントである,プラグイン可能なSentinelAgentを導入する。
論文 参考訳(メタデータ) (2025-05-30T04:25:19Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Manipulating Multimodal Agents via Cross-Modal Prompt Injection [34.35145839873915]
マルチモーダルエージェントにおいて、これまで見過ごされていた重要なセキュリティ脆弱性を特定します。
攻撃者が複数のモードにまたがって敵の摂動を埋め込む新たな攻撃フレームワークであるCrossInjectを提案する。
本手法は,攻撃成功率を少なくとも30.1%向上させることで,最先端の攻撃よりも優れる。
論文 参考訳(メタデータ) (2025-04-19T16:28:03Z) - Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach [9.483655213280738]
本稿では,大規模言語モデル(LLM)の安全性を評価するための新しいアプローチを提案する。
我々は、プロンプトリークをLLMデプロイメントの安全性にとって重要な脅威と定義する。
我々は,協調エージェントが目的のLLMを探索・活用し,そのプロンプトを抽出するマルチエージェントシステムを実装した。
論文 参考訳(メタデータ) (2025-02-18T08:17:32Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。