論文の概要: The Evolution of Agentic AI in Cybersecurity: From Single LLM Reasoners to Multi-Agent Systems and Autonomous Pipelines
- arxiv url: http://arxiv.org/abs/2512.06659v1
- Date: Sun, 07 Dec 2025 05:10:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.454527
- Title: The Evolution of Agentic AI in Cybersecurity: From Single LLM Reasoners to Multi-Agent Systems and Autonomous Pipelines
- Title(参考訳): サイバーセキュリティにおけるエージェントAIの進化:単一LLM共振器からマルチエージェントシステムと自律パイプラインへ
- Authors: Vaishali Vinay,
- Abstract要約: サイバーセキュリティはエージェントAIのアーリーアダプターの1つになった。
この調査は、サイバーセキュリティにおけるエージェントAIの5世代分類を提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cybersecurity has become one of the earliest adopters of agentic AI, as security operations centers increasingly rely on multi-step reasoning, tool-driven analysis, and rapid decision-making under pressure. While individual large language models can summarize alerts or interpret unstructured reports, they fall short in real SOC environments that require grounded data access, reproducibility, and accountable workflows. In response, the field has seen a rapid architectural evolution from single-model helpers toward tool-augmented agents, distributed multi-agent systems, schema-bound tool ecosystems, and early explorations of semi-autonomous investigative pipelines. This survey presents a five-generation taxonomy of agentic AI in cybersecurity. It traces how capabilities and risks change as systems advance from text-only LLM reasoners to multi-agent collaboration frameworks and constrained-autonomy pipelines. We compare these generations across core dimensions - reasoning depth, tool use, memory, reproducibility, and safety. In addition, we also synthesize emerging benchmarks used to evaluate cyber-oriented agents. Finally, we outline the unresolved challenges that accompany this evolution, such as response validation, tool-use correctness, multi-agent coordination, long-horizon reasoning, and safeguards for high-impact actions. Collectively, this work provides a structured perspective on how agentic AI is taking shape within cybersecurity and what is required to ensure its safe and reliable deployment.
- Abstract(参考訳): サイバーセキュリティは、エージェントAIの初期の採用者の1つとなり、セキュリティオペレーションセンターは、圧力下での多段階の推論、ツール駆動分析、迅速な意思決定にますます依存している。
個々の大規模言語モデルは警告を要約したり、構造化されていないレポートを解釈したりできるが、地上のデータアクセス、再現性、説明可能なワークフローを必要とする実際のSOC環境では不足している。
これに対し、単一モデルヘルパーからツール拡張エージェント、分散マルチエージェントシステム、スキーマバウンドツールエコシステム、半自律的な調査パイプラインの早期探索に至るまで、この分野は急速に進化してきた。
この調査は、サイバーセキュリティにおけるエージェントAIの5世代分類を提示する。
テキストのみのLLM推論からマルチエージェントコラボレーションフレームワークや制約付き自律パイプラインへの移行に伴って、機能やリスクがどう変化するかをトレースする。
私たちはこれらの世代を、推論の深さ、ツールの使用方法、メモリ、再現性、安全性など、コアディメンションで比較します。
また,サイバー指向エージェントの評価に用いられる新しいベンチマークを合成する。
最後に、この進化に伴う未解決課題について概説する。例えば、応答検証、ツール使用の正しさ、マルチエージェントコーディネーション、ロングホライゾン推論、高影響行動の保護などである。
総合的に見て、この研究は、サイバーセキュリティにおけるエージェントAIの形と、その安全で信頼性の高いデプロイメントを保証するために必要なものについて、構造化された視点を提供する。
関連論文リスト
- A Survey on Agentic Multimodal Large Language Models [84.18778056010629]
エージェントマルチモーダル大言語モデル(Agentic MLLMs)に関する総合的な調査を行う。
我々は,エージェントMLLMの新たなパラダイムを探求し,その概念的基盤を明確にし,従来のMLLMエージェントとの特徴を区別する。
コミュニティのためのこの分野の研究をさらに加速するため、エージェントMLLMを開発するためのオープンソースのトレーニングフレームワーク、トレーニングおよび評価データセットをコンパイルする。
論文 参考訳(メタデータ) (2025-10-13T04:07:01Z) - A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems [53.37728204835912]
既存のAIシステムは、デプロイ後も静的な手作業による構成に依存している。
近年,インタラクションデータと環境フィードバックに基づいてエージェントシステムを自動拡張するエージェント進化手法が研究されている。
この調査は、自己進化型AIエージェントの体系的な理解を研究者や実践者に提供することを目的としている。
論文 参考訳(メタデータ) (2025-08-10T16:07:32Z) - A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
大きな言語モデル(LLM)は強力な能力を示しているが、基本的に静的である。
LLMはますますオープンでインタラクティブな環境にデプロイされているため、この静的な性質は重要なボトルネックとなっている。
この調査は、自己進化エージェントの体系的で包括的なレビューを初めて提供する。
論文 参考訳(メタデータ) (2025-07-28T17:59:05Z) - From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows [1.202155693533555]
構造化関数呼び出しインタフェースを持つ大規模言語モデル(LLM)は、リアルタイムデータ検索と計算機能を大幅に拡張した。
しかし、プラグイン、コネクター、エージェント間プロトコルの爆発的な増殖は、発見メカニズムやセキュリティプラクティスよりも大きくなっている。
ホスト・ツー・ツールとエージェント・ツー・エージェント・エージェントの通信にまたがる,LDM-エージェントエコシステムに対する最初の統一エンドツーエンド脅威モデルを導入する。
論文 参考訳(メタデータ) (2025-06-29T14:32:32Z) - SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models [8.912091484067508]
SV-LLMは,システムオンチップ(SoC)セキュリティ検証の自動化と強化を目的とした,新しいマルチエージェントアシスタントシステムである。
検証質問応答、セキュリティ資産の識別、脅威モデリング、テスト計画とプロパティ生成、脆弱性検出、シミュレーションベースのバグ検証といったタスクのための特別なエージェントを統合することで、SV-LLMはワークフローを合理化する。
このシステムは,手作業による介入を減らすこと,精度の向上,セキュリティ分析の高速化,設計サイクルの初期段階におけるリスクの積極的な識別と緩和を支援することを目的としている。
論文 参考訳(メタデータ) (2025-06-25T13:31:13Z) - Deep Research Agents: A Systematic Examination And Roadmap [109.53237992384872]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - AgentOps: Enabling Observability of LLM Agents [12.49728300301026]
大規模言語モデル(LLM)エージェントは、自律的で非決定論的行動のため、AI安全性に重大な懸念を提起する。
本稿では,エージェントのライフサイクル全体を通じて追跡されるべきアーティファクトと関連するデータを特定し,効果的な観測可能性を実現するための,AgentOpsの包括的な分類法を提案する。
私たちの分類は、監視、ロギング、分析をサポートするAgentOpsインフラストラクチャを設計、実装するためのリファレンステンプレートとして機能します。
論文 参考訳(メタデータ) (2024-11-08T02:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。