論文の概要: Representation-Regularized Convolutional Audio Transformer for Audio Understanding
- arxiv url: http://arxiv.org/abs/2601.21612v1
- Date: Thu, 29 Jan 2026 12:16:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.797574
- Title: Representation-Regularized Convolutional Audio Transformer for Audio Understanding
- Title(参考訳): 音声理解のための表現規則化畳み込み変換器
- Authors: Bing Han, Chushu Zhou, Yifan Yang, Wei Wang, Chenda Li, Wangyou Zhang, Yanmin Qian,
- Abstract要約: スクラッチからのブートストラップ表現は計算に高価で、しばしば収束するために広範囲のトレーニングを必要とします。
本稿では,これらの課題に対処するための統合フレームワークであるConvolutional Audio Transformer (CAT)を提案する。
- 参考スコア(独自算出の注目度): 53.092757178419355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bootstrap-based Self-Supervised Learning (SSL) has achieved remarkable progress in audio understanding. However, existing methods typically operate at a single level of granularity, limiting their ability to model the diverse temporal and spectral structures inherent in complex audio signals. Furthermore, bootstrapping representations from scratch is computationally expensive, often requiring extensive training to converge. In this work, we propose the Convolutional Audio Transformer (CAT), a unified framework designed to address these challenges. First, to capture hierarchical audio features, CAT incorporates a Multi-resolution Block that aggregates information across varying granularities. Second, to enhance training efficiency, we introduce a Representation Regularization objective. Drawing inspiration from generative modeling, this auxiliary task guides the student model by aligning its predictions with high-quality semantic representations from frozen, pre-trained external encoders. Experimental results demonstrate that CAT significantly outperforms baselines on audio understanding benchmarks. Notably, it achieves competitive performance on the AudioSet 20k dataset with 5 times faster convergence than existing methods. Codes and checkpoints will be released soon at https://github.com/realzhouchushu/CAT.
- Abstract(参考訳): Bootstrapベースのセルフスーパーバイドラーニング(SSL)は、オーディオ理解において顕著な進歩を遂げている。
しかし、既存の手法は一般に単一レベルの粒度で動作し、複雑な音声信号に固有の様々な時間的・スペクトル的構造をモデル化する能力を制限する。
さらに、スクラッチからのブートストラップ表現は計算コストが高く、収束するためには大規模なトレーニングが必要になることが多い。
本研究では,これらの課題に対処するための統合フレームワークであるConvolutional Audio Transformer (CAT)を提案する。
まず、階層的なオーディオ機能をキャプチャするために、CATは様々な粒度にまたがる情報を集約するマルチレゾリューションブロックを組み込んでいる。
第2に、トレーニング効率を向上させるために、表現規則化の目的を導入する。
生成モデルからインスピレーションを得たこの補助タスクは、凍結学習された外部エンコーダからの高品質な意味表現と予測を一致させることで、学生モデルを導く。
実験の結果,CATは音声理解ベンチマークのベースラインを著しく上回ることがわかった。
特にAudioSet 20kデータセットでは、既存のメソッドよりも5倍のコンバージェンスで競合的なパフォーマンスを実現している。
コードとチェックポイントは近々https://github.com/realshuchushu/CAT.comで公開される。
関連論文リスト
- From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data [55.2480439325792]
音声対応の大規模言語モデル(ALLM)は近年,音声入力の理解と処理において大きな進歩を遂げている。
これらのモデルは典型的にはテキストベースの大規模言語モデル(LLM)に適応し、音声関連タスクのさらなるトレーニングを行う。
本研究では、現在と欠落した音を区別するALLMの能力を高めるために、コントラッシブな訓練データを生成するデータ生成フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-26T16:08:41Z) - Tailored Design of Audio-Visual Speech Recognition Models using Branchformers [0.0]
本稿では,パラメータ効率の高い音声認識システムの設計のための新しいフレームワークを提案する。
より正確に言うと、提案するフレームワークは、まず、音声のみのシステムとビデオのみのシステムを推定し、次に、カスタマイズされたオーディオ視覚統合エンコーダを設計する。
我々のモデルは、英語で約2.5%の競争力のある単語誤り率(WER)を達成し、スペイン語で既存のアプローチを上回ります。
論文 参考訳(メタデータ) (2024-07-09T07:15:56Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event
Classification [42.95038619688867]
ASiTは、グループマスク付きモデル学習と自己蒸留を用いて、局所的およびグローバルな文脈情報をキャプチャする、新しい自己教師型学習フレームワークである。
我々は、音声イベント分類、キーワードスポッティング、話者識別を含む音声および音声の分類タスクにおいて、事前訓練されたモデルを評価する。
論文 参考訳(メタデータ) (2022-11-23T18:21:09Z) - BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping [19.071463356974387]
この研究は、ブートストラップによる自己教師型学習に基づく既存の手法を拡張し、様々なエンコーダアーキテクチャを提案し、異なる事前学習データセットを使用することの効果を探る。
本稿では,手工芸とデータ駆動型学習音声機能を組み合わせたハイブリッド音声表現を提案する。
提案したすべての表現は、聴覚シーン分類とタイムスタンプ検出タスクのためのHEAR NeurIPS 2021チャレンジで評価された。
論文 参考訳(メタデータ) (2022-06-24T02:26:40Z) - SSAST: Self-Supervised Audio Spectrogram Transformer [19.09439093130855]
本稿では,非ラベル音声を用いた音声スペクトログラム変換器(AST)モデルを,共同識別・生成型マスマスキング・スペクトログラム・パッチ・モデリング(MSPM)で事前学習することを提案する。
我々は、音声イベント分類、キーワードスポッティング、感情認識、話者識別を含む音声および音声の分類タスクにおいて、事前訓練されたモデルを評価する。
我々の知る限りでは、このフレームワークはオーディオおよび音声領域における最初のパッチベースのセルフ教師あり学習フレームワークであり、ASTのための最初のセルフ教師あり学習フレームワークでもある。
論文 参考訳(メタデータ) (2021-10-19T07:58:28Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。