論文の概要: Abstract Concept Modelling in Conceptual Spaces: A Study on Chess Strategies
- arxiv url: http://arxiv.org/abs/2601.21771v1
- Date: Thu, 29 Jan 2026 14:22:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.889734
- Title: Abstract Concept Modelling in Conceptual Spaces: A Study on Chess Strategies
- Title(参考訳): 概念空間における抽象概念モデリング:チェス戦略に関する研究
- Authors: Hadi Banaee, Stephanie Lowry,
- Abstract要約: 本稿では,チェスによる概念実証を通じて,時間とともに展開する抽象概念をモデル化するための概念空間フレームワークを提案する。
攻撃や犠牲といった戦略概念は、解釈可能な品質次元を越えて幾何学的領域として表現される。
このアプローチはデュアルパースペクティブなモデリングをサポートし、プレイヤーが同じ状況を異なる方法で解釈する方法をキャプチャする。
- 参考スコア(独自算出の注目度): 0.3093890460224435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a conceptual space framework for modelling abstract concepts that unfold over time, demonstrated through a chess-based proof-of-concept. Strategy concepts, such as attack or sacrifice, are represented as geometric regions across interpretable quality dimensions, with chess games instantiated and analysed as trajectories whose directional movement toward regions enables recognition of intended strategies. This approach also supports dual-perspective modelling, capturing how players interpret identical situations differently. Our implementation demonstrates the feasibility of trajectory-based concept recognition, with movement patterns aligning with expert commentary. This work explores extending the conceptual spaces theory to temporally realised, goal-directed concepts. The approach establishes a foundation for broader applications involving sequential decision-making and supports integration with knowledge evolution mechanisms for learning and refining abstract concepts over time.
- Abstract(参考訳): 本稿では,チェスによる概念実証を通じて,時間とともに展開する抽象概念をモデル化するための概念空間フレームワークを提案する。
攻撃や犠牲などの戦略概念は、解釈可能な品質の次元にわたって幾何学的な領域として表現され、ゲームがインスタンス化され分析され、領域への方向性が意図された戦略の認識を可能にするトラジェクトリとして分析される。
このアプローチはデュアルパースペクティブなモデリングをサポートし、プレイヤーが同じ状況を異なる方法で解釈する方法をキャプチャする。
提案手法は, 軌跡に基づく概念認識の実現可能性を示し, 運動パターンと専門家のコメントとの整合性を示す。
この研究は、概念空間理論を時間的に実現されたゴール指向の概念に拡張することを研究する。
このアプローチは、シーケンシャルな意思決定に関わる広範なアプリケーションの基礎を確立し、抽象概念の学習と洗練のための知識進化メカニズムとの統合をサポートする。
関連論文リスト
- A Geometric Unification of Concept Learning with Concept Cones [58.70836885177496]
解釈可能性の2つの伝統は、並べて進化してきたが、互いに話すことはめったにない:概念ボトルネックモデル(CBM)とスパースオートエンコーダ(SAE)。
両パラダイムが同じ幾何学的構造をインスタンス化することを示す。
CBMは人間の定義した参照ジオメトリを提供するが、SAEは学習した円錐がCBMをどの程度よく近似するか、あるいは包含しているかによって評価することができる。
論文 参考訳(メタデータ) (2025-12-08T09:51:46Z) - FaCT: Faithful Concept Traces for Explaining Neural Network Decisions [56.796533084868884]
ディープネットワークは、幅広いタスクで顕著なパフォーマンスを示しているが、それらの機能に関するグローバルな概念レベルの理解は、依然として重要な課題である。
本稿では,概念に基づく説明の忠実さを強調し,モデル独立な機械的概念説明を用いた新しいモデルを提案する。
私たちの概念はクラス間で共有され、あらゆるレイヤから、ロジットへの貢献と入力-視覚化を忠実にトレースすることができます。
論文 参考訳(メタデータ) (2025-10-29T13:35:46Z) - OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
創造的な視覚概念の生成は、しばしば関連する結果を生み出すために参照イメージ内の特定の概念からインスピレーションを引き出す。
我々は,創造的画像生成のための視覚的概念分離手法であるOmniPrismを提案する。
提案手法は,自然言語で案内される不整合概念表現を学習し,これらの概念を組み込むために拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-12-16T18:59:52Z) - On the Role of Entity and Event Level Conceptualization in Generalizable Reasoning: A Survey of Tasks, Methods, Applications, and Future Directions [62.06913340614293]
本稿では,概念化されるインスタンスのタイプに基づいて,異なる概念化のタイプを4つのレベルに分類する。
本稿では,150以上の論文を包括的に調査し,概念化に関連するさまざまな定義,リソース,手法,下流アプリケーションについて調査する。
論文 参考訳(メタデータ) (2024-06-16T10:32:41Z) - Encoding Hierarchical Schema via Concept Flow for Multifaceted Ideology Detection [26.702058189138462]
多面的イデオロギー検出(MID)は、テキストの複数の面へのイデオロギー的傾きを検出することを目的としている。
MIDタスクのための新しい概念セマンティクス強化フレームワークを開発する。
提案手法は, クロストピックシナリオを含む, MIDにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-29T10:37:28Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
現在,SOTA の概念学習アプローチは,概念の忠実さの欠如と,概念の相互運用の限界という2つの大きな問題に悩まされている。
ドメイン間の概念学習のための新しい自己説明型アーキテクチャを提案する。
提案手法は,現在広く使われている4つの実世界のデータセットに対するSOTA概念学習手法に対して有効であることを示す。
論文 参考訳(メタデータ) (2024-05-01T06:50:18Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
この研究は、アンテホック解釈可能性、特に概念ボトルネックモデル(CBM)をターゲットにしている。
我々のゴールは、人間の理解可能な概念を2段階の粒度で、高度に解釈可能な意思決定プロセスを認めるフレームワークを設計することである。
この枠組みでは、概念情報は全体像と一般的な非構造概念の類似性にのみ依存せず、画像シーンのパッチ固有の領域に存在するより粒度の細かい概念情報を発見・活用するために概念階層の概念を導入している。
論文 参考訳(メタデータ) (2023-10-03T14:57:31Z) - Disentangling Domain Ontologies [0.0]
そこで本研究では,マルチレベルな概念モデリング戦略であるConceptual Disentanglementを提案する。
現状の技術開発手法とアプローチが、我々の特性に関して不十分である理由を論じる。
論文 参考訳(メタデータ) (2023-03-21T08:36:14Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
このレポートは、表現学習が生データから概念を誘導する方法を示しています。
このレポートの主な技術的目標は、表現学習のテクニックが概念空間の格子理論的定式化とどのように結婚できるかを示すことである。
論文 参考訳(メタデータ) (2021-01-13T15:22:01Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
視覚的推論における概念誘導の問題,すなわち,画像に関連付けられた質問応答対から概念とその階層的関係を同定する。
我々はまず,オブジェクトレベルの視覚的特徴を持つ視覚的推論タスクを実行するために,オブジェクト指向合成注意モデル(OCCAM)という新しいフレームワークを設計する。
そこで我々は,対象の視覚的特徴と質問語の間の注意パターンから手がかりを用いて,対象と関係の概念を誘導する手法を考案した。
論文 参考訳(メタデータ) (2020-11-23T18:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。