論文の概要: FaCT: Faithful Concept Traces for Explaining Neural Network Decisions
- arxiv url: http://arxiv.org/abs/2510.25512v1
- Date: Wed, 29 Oct 2025 13:35:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:45.5962
- Title: FaCT: Faithful Concept Traces for Explaining Neural Network Decisions
- Title(参考訳): FaCT:ニューラルネットワークの決定を説明するための忠実な概念トレース
- Authors: Amin Parchami-Araghi, Sukrut Rao, Jonas Fischer, Bernt Schiele,
- Abstract要約: ディープネットワークは、幅広いタスクで顕著なパフォーマンスを示しているが、それらの機能に関するグローバルな概念レベルの理解は、依然として重要な課題である。
本稿では,概念に基づく説明の忠実さを強調し,モデル独立な機械的概念説明を用いた新しいモデルを提案する。
私たちの概念はクラス間で共有され、あらゆるレイヤから、ロジットへの貢献と入力-視覚化を忠実にトレースすることができます。
- 参考スコア(独自算出の注目度): 56.796533084868884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep networks have shown remarkable performance across a wide range of tasks, yet getting a global concept-level understanding of how they function remains a key challenge. Many post-hoc concept-based approaches have been introduced to understand their workings, yet they are not always faithful to the model. Further, they make restrictive assumptions on the concepts a model learns, such as class-specificity, small spatial extent, or alignment to human expectations. In this work, we put emphasis on the faithfulness of such concept-based explanations and propose a new model with model-inherent mechanistic concept-explanations. Our concepts are shared across classes and, from any layer, their contribution to the logit and their input-visualization can be faithfully traced. We also leverage foundation models to propose a new concept-consistency metric, C$^2$-Score, that can be used to evaluate concept-based methods. We show that, compared to prior work, our concepts are quantitatively more consistent and users find our concepts to be more interpretable, all while retaining competitive ImageNet performance.
- Abstract(参考訳): ディープネットワークは、幅広いタスクで顕著なパフォーマンスを示しているが、それらの機能に関するグローバルな概念レベルの理解は、依然として重要な課題である。
ポストホックなコンセプトベースのアプローチの多くは、その動作を理解するために導入されているが、必ずしもモデルに忠実であるとは限らない。
さらに、モデルが学習する概念、例えばクラス特異性、空間的範囲の小さいこと、あるいは人間の期待に合致することについて制限的な仮定を行う。
本研究では,そのような概念に基づく説明の忠実さを強調し,モデルに忠実な機械的概念説明を用いた新しいモデルを提案する。
私たちの概念はクラス間で共有され、あらゆるレイヤから、ロジットへの貢献と入力-視覚化を忠実にトレースすることができます。
また、基礎モデルを利用して、概念に基づく手法の評価に使用できる新しい概念整合度指標C$^2$-Scoreを提案する。
従来の作業と比較して、私たちのコンセプトは定量的に一貫性があり、ユーザは、競争力のあるImageNetのパフォーマンスを維持しながら、私たちのコンセプトをより解釈可能であることに気付きます。
関連論文リスト
- Towards Better Generalization and Interpretability in Unsupervised Concept-Based Models [9.340843984411137]
本稿では、LCBM(Learningable Concept-Based Model)という、画像分類のための教師なし概念ベースモデルを提案する。
我々はLCBMが既存の教師なし概念ベースモデルを上回る一般化能力を示し、ブラックボックスモデルの性能とほぼ一致することを示した。
概念埋め込みの利用にもかかわらず、我々は概念の局所的な線形結合によるモデル解釈可能性を維持している。
論文 参考訳(メタデータ) (2025-06-02T16:26:41Z) - Walking the Web of Concept-Class Relationships in Incrementally Trained Interpretable Models [25.84386438333865]
概念とクラスは複雑な関係の網を形成しており、それは劣化しやすく、経験を通じて保存および拡張する必要がある。
本研究では,マルチモーダルな概念を用いて,学習可能なパラメータの数を増やすことなく分類を行う新しい手法である MuCIL を提案する。
論文 参考訳(メタデータ) (2025-02-27T18:59:29Z) - OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
創造的な視覚概念の生成は、しばしば関連する結果を生み出すために参照イメージ内の特定の概念からインスピレーションを引き出す。
我々は,創造的画像生成のための視覚的概念分離手法であるOmniPrismを提案する。
提案手法は,自然言語で案内される不整合概念表現を学習し,これらの概念を組み込むために拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-12-16T18:59:52Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
現在,SOTA の概念学習アプローチは,概念の忠実さの欠如と,概念の相互運用の限界という2つの大きな問題に悩まされている。
ドメイン間の概念学習のための新しい自己説明型アーキテクチャを提案する。
提案手法は,現在広く使われている4つの実世界のデータセットに対するSOTA概念学習手法に対して有効であることを示す。
論文 参考訳(メタデータ) (2024-05-01T06:50:18Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
概念は人間の思考基盤として知られている。
ディープニューラルネットワーク(DNN)における様々な概念表現とその発見アルゴリズムの体系的レビューと分類について述べる。
また,これらの手法を総合的に調査した最初の論文として,概念に基づくモデル改善文献について詳述する。
論文 参考訳(メタデータ) (2024-03-21T17:09:20Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。