論文の概要: Understanding Efficiency: Quantization, Batching, and Serving Strategies in LLM Energy Use
- arxiv url: http://arxiv.org/abs/2601.22362v1
- Date: Thu, 29 Jan 2026 22:16:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-02 18:28:15.092537
- Title: Understanding Efficiency: Quantization, Batching, and Serving Strategies in LLM Energy Use
- Title(参考訳): LLMエネルギー利用における量子化・バッチ化・実行戦略の理解
- Authors: Julien Delavande, Regis Pierrard, Sasha Luccioni,
- Abstract要約: 大規模言語モデル(LLM)はますます本番環境に配備され、計算資源やエネルギー需要の負担をトレーニングから推論へとシフトさせるのに寄与している。
我々は,同じモデルにおけるエネルギー消費のオーダー・オブ・マグニチュードの違いを,Emphsystemレベルの設計選択がいかに引き起こすかを示す。
我々の発見は、よりグリーンなAIサービスのための位相認識エネルギープロファイリングとシステムレベルの最適化を動機付けている。
- 参考スコア(独自算出の注目度): 4.513690948889834
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) are increasingly deployed in production, contributing towards shifting the burden in terms of computational resources and energy demands from training to inference. While prior work has examined the energy cost of inference per prompt or per token, we highlight how \emph{system-level design choices} - such as numerical precision, batching strategy, and request scheduling - can lead to orders-of-magnitude differences in energy consumption for the same model. We perform a detailed empirical study of LLM inference energy and latency on NVIDIA H100 GPUs, analyzing the impact of quantization, batch size, and serving configuration (e.g., with Hugging Face's Text Generation Inference server). Our results reveal that lower-precision formats only yield energy gains in compute-bound regimes; that batching improves energy efficiency, especially in memory-bound phases like decoding; and that structured request timing (arrival shaping) can reduce per-request energy by up to 100 times. We argue that sustainable LLM deployment depends not only on model internals, but also on the orchestration of the serving stack. Our findings motivate phase-aware energy profiling and system-level optimizations for greener AI services.
- Abstract(参考訳): 大規模言語モデル(LLM)はますます本番環境に配備され、計算資源やエネルギー需要の負担をトレーニングから推論へとシフトさせるのに寄与している。
先行研究では、プロンプト当たりやトークン当たりの推論のエネルギーコストについて検討しているが、数値的精度、バッチ化戦略、要求スケジューリングのような 'emph{system-level design choices} が、同じモデルにおけるエネルギー消費のオーダー・オブ・マグニチュードの違いをもたらすかを強調した。
NVIDIA H100 GPU上でのLLM推論エネルギーと遅延に関する詳細な実験を行い、量子化の影響、バッチサイズ、サービス構成(例えば、Hugging Faceのテキスト生成推論サーバ)を分析した。
以上の結果から,バッチ処理は特にデコードなどのメモリバウンドフェーズにおいてエネルギー効率を向上し,構造化された要求タイミング(位置整形)によって要求毎のエネルギーを最大100倍削減できることがわかった。
持続可能なLLMデプロイメントはモデル内部だけでなく,サービススタックのオーケストレーションにも依存する,と我々は主張する。
我々の発見は、よりグリーンなAIサービスのための位相認識エネルギープロファイリングとシステムレベルの最適化を動機付けている。
関連論文リスト
- Energy Considerations of Large Language Model Inference and Efficiency Optimizations [28.55549828393871]
大規模言語モデル(LLM)の規模と採用が拡大するにつれて、その計算と環境コストは上昇し続けている。
多様なNLPおよびAIワークロードにまたがる共通推論効率最適化のエネルギー含意を系統的に分析する。
本研究により, 推定効率最適化の適切な適用により, 最適化されていないベースラインから最大73%のエネルギー使用量を削減できることが判明した。
論文 参考訳(メタデータ) (2025-04-24T15:45:05Z) - Sustainable LLM Inference for Edge AI: Evaluating Quantized LLMs for Energy Efficiency, Output Accuracy, and Inference Latency [6.306413686006502]
我々はOllamaライブラリから28の量子化大言語モデル(LLM)を包括的に分析する。
我々は、複数の量子化レベルおよびタスクタイプにわたるエネルギー効率、推論性能、出力精度を評価する。
その結果,異なる量子化設定におけるエネルギー効率,推定速度,精度のトレードオフが明らかになった。
論文 参考訳(メタデータ) (2025-04-04T11:29:30Z) - Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings [1.781045155774463]
大規模言語モデル(LLM)は、幅広い自然言語処理(NLP)タスクにおいて顕著な性能を示した。
しかしながら、彼らの推論ワークロードは計算的かつエネルギー集約的であり、持続可能性や環境への影響に関する懸念を提起している。
論文 参考訳(メタデータ) (2025-01-14T16:02:33Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
本研究の目的は,画像分類データセットと事前学習モデルの解析,最適化モデルと非最適化モデルを比較して推論効率を向上させること,最適化の経済的影響を評価することである。
画像分類におけるPyTorch最適化手法(動的量子化、トーチ・コンパイル、局所プルーニング、グローバルプルーニング)と42のHugging Faceモデルの影響を評価するための制御実験を行った。
動的量子化は推論時間とエネルギー消費の大幅な削減を示し、大規模システムに非常に適している。
論文 参考訳(メタデータ) (2024-09-19T16:23:03Z) - DynamoLLM: Designing LLM Inference Clusters for Performance and Energy Efficiency [7.073435885680335]
そこで我々はDynamoLLMを提案する。DynamoLLMは、生成型大規模言語モデルのための最初のエネルギー管理フレームワークである。
サービスレベルでは、DynamoLLMは53%のエネルギーと38%の運転二酸化炭素を節約し、顧客へのコストを61%削減する。
論文 参考訳(メタデータ) (2024-08-01T17:40:45Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) はコンピュータビジョンコミュニティにおいて最も普及しているバックボーンネットワークの1つである。
本稿では,AdaLog(Adaptive Logarithm AdaLog)量子化器を提案する。
論文 参考訳(メタデータ) (2024-07-17T18:38:48Z) - Hybrid Heterogeneous Clusters Can Lower the Energy Consumption of LLM Inference Workloads [0.2389598109913753]
大規模言語モデル(LLM)の訓練と使用には大量のエネルギーが必要である。
本稿では, LLM を運用するデータセンターにおけるエネルギー消費削減の課題に対処する。
本稿では,コストベースのスケジューリングフレームワークを用いて,ハードウェアアクセラレータ間でタスクを動的に割り当てるハイブリッドデータセンターモデルを提案する。
論文 参考訳(メタデータ) (2024-04-25T11:24:08Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。