論文の概要: The Semantic Trap: Do Fine-tuned LLMs Learn Vulnerability Root Cause or Just Functional Pattern?
- arxiv url: http://arxiv.org/abs/2601.22655v2
- Date: Mon, 02 Feb 2026 09:48:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 15:03:50.804199
- Title: The Semantic Trap: Do Fine-tuned LLMs Learn Vulnerability Root Cause or Just Functional Pattern?
- Title(参考訳): セマンティックトラップ: 微調整LDMは脆弱性根本原因を学習するのか、それとも単に機能パターンなのか?
- Authors: Feiyang Huang, Yuqiang Sun, Fan Zhang, Ziqi Yang, Han Liu, Yang Liu,
- Abstract要約: そこで我々は,脆弱性根本原因を機能パターンから切り離すための総合評価フレームワークTrapEvalを提案する。
我々は、3つのモデルファミリーにまたがる5つの最先端LCMを微調整し、それらを、CodeBLEUによって測定されたクロスデータセットテスト、セマンティック保存、および様々なセマンティックギャップの下で評価する。
従来のデータセットに対する高いベンチマークスコアは、モデルが脆弱性の真の因果論理を理解できないことを隠蔽している可能性がある。
- 参考スコア(独自算出の注目度): 14.472036099680961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs demonstrate promising performance in software vulnerability detection after fine-tuning. However, it remains unclear whether these gains reflect a genuine understanding of vulnerability root causes or merely an exploitation of functional patterns. In this paper, we identify a critical failure mode termed the "semantic trap," where fine-tuned LLMs achieve high detection scores by associating certain functional domains with vulnerability likelihood rather than reasoning about the underlying security semantics. To systematically evaluate this phenomenon, we propose TrapEval, a comprehensive evaluation framework designed to disentangle vulnerability root cause from functional pattern. TrapEval introduces two complementary datasets derived from real-world open-source projects: V2N, which pairs vulnerable code with unrelated benign code, and V2P, which pairs vulnerable code with its corresponding patched version, forcing models to distinguish near-identical code that differs only in subtle security-critical logic. Using TrapEval, we fine-tune five representative state-of-the-art LLMs across three model families and evaluate them under cross-dataset testing, semantic-preserving perturbations, and varying degrees of semantic gap measured by CodeBLEU. Our empirical results reveal that, despite improvements in metrics, fine-tuned LLMs consistently struggle to distinguish vulnerable code from its patched counterpart, exhibit severe robustness degradation under minor semantic-preserving transformations, and rely heavily on functional-context shortcuts when the semantic gap is small. These findings provide strong evidence that current fine-tuning practices often fail to impart true vulnerability reasoning. Our findings serve as a wake-up call: high benchmark scores on traditional datasets may be illusory, masking the model's inability to understand the true causal logic of vulnerabilities.
- Abstract(参考訳): LLMは微調整後のソフトウェア脆弱性検出において有望な性能を示す。
しかし、これらが脆弱性の根本原因の真の理解を反映しているのか、それとも単に機能パターンの搾取に過ぎないのかは、いまだ不明である。
本稿では,特定の機能ドメインと潜在的なセキュリティセマンティクスを推論するのではなく,潜在的な機能ドメインを関連付けることで,微調整のLLMが高い検出スコアを得る「セマンティックトラップ」と呼ばれる臨界障害モードを同定する。
この現象を体系的に評価するために,機能パターンから脆弱性の根本原因を解き放つための総合的な評価フレームワークであるTrapEvalを提案する。
TrapEvalは、現実世界のオープンソースプロジェクトから派生した2つの補完的データセットを紹介している。脆弱性コードと無関係な良性コードとをペアリングするV2Nと、脆弱性コードと対応するパッチバージョンをペアリングするV2Pだ。
TrapEvalを用いて、3つのモデルファミリーにまたがる5つの最先端LCMを微調整し、それらをクロスデータセットテスト、セマンティック保存摂動、CodeBLEUによる様々なセマンティックギャップで評価する。
我々の経験的結果は、メトリクスの改善にもかかわらず、微調整されたLLMは、脆弱性のあるコードをパッチされたコードと区別するのに一貫して苦労し、マイナーなセマンティック保存変換の下で深刻な堅牢性低下を示し、セマンティックギャップが小さいときに関数-コンテキストショートカットに強く依存していることを示している。
これらの発見は、現在の微調整の実践が真の脆弱性推論を与えるのに失敗する、という強い証拠となる。
従来のデータセットに対する高いベンチマークスコアは、モデルが脆弱性の真の因果論理を理解できないことを隠蔽している可能性がある。
関連論文リスト
- Why Does the LLM Stop Computing: An Empirical Study of User-Reported Failures in Open-Source LLMs [50.075587392477935]
オープンソースのDeepSeek、Llama、Qwenのエコシステムから、705の現実世界の失敗に関する大規模な実証的研究を行った。
ホワイトボックスオーケストレーションは、モデルアルゴリズムの欠陥からデプロイメントスタックのシステム的脆弱性へと、信頼性のボトルネックを移動させます。
論文 参考訳(メタデータ) (2026-01-20T06:42:56Z) - SWAP: Towards Copyright Auditing of Soft Prompts via Sequential Watermarking [58.475471437150674]
ソフトプロンプト(SWAP)のための逐次透かしを提案する。
SWAPは、特定のディフェンダー指定のアウト・オブ・ディストリビューション・クラスを通じて、透かしを符号化する。
11のデータセットの実験では、SWAPの有効性、無害性、および潜在的適応攻撃に対する堅牢性を示す。
論文 参考訳(メタデータ) (2025-11-05T13:48:48Z) - DeLeaker: Dynamic Inference-Time Reweighting For Semantic Leakage Mitigation in Text-to-Image Models [55.30555646945055]
テキスト・ツー・イメージ(T2I)モデルはセマンティック・リークに対して脆弱である。
DeLeakerは、モデルのアテンションマップに直接介入することで、漏洩を緩和する軽量なアプローチである。
SLIMはセマンティックリークに特化した最初のデータセットである。
論文 参考訳(メタデータ) (2025-10-16T17:39:21Z) - DiffuGuard: How Intrinsic Safety is Lost and Found in Diffusion Large Language Models [50.21378052667732]
我々は、ステップ内およびステップ間ダイナミクスという2つの異なる次元にわたるジェイルブレイク攻撃に対して、dLLM脆弱性の詳細な分析を行う。
デュアルステージアプローチによる脆弱性に対処する,トレーニング不要な防御フレームワークであるDiffuGuardを提案する。
論文 参考訳(メタデータ) (2025-09-29T05:17:10Z) - VulAgent: Hypothesis-Validation based Multi-Agent Vulnerability Detection [55.957275374847484]
VulAgentは仮説検証に基づくマルチエージェント脆弱性検出フレームワークである。
セマンティクスに敏感なマルチビュー検出パイプラインを実装しており、それぞれが特定の分析の観点から一致している。
平均して、VulAgentは全体的な精度を6.6%改善し、脆弱性のある固定されたコードペアの正確な識別率を最大450%向上させ、偽陽性率を約36%削減する。
論文 参考訳(メタデータ) (2025-09-15T02:25:38Z) - Explicit Vulnerability Generation with LLMs: An Investigation Beyond Adversarial Attacks [0.5218155982819203]
大規模言語モデル(LLM)は、コードアシスタントとしてますます使われている。
本研究は、より直接的な脅威について検討する。オープンソースのLLMは、トリガー時に脆弱性のあるコードを生成する。
論文 参考訳(メタデータ) (2025-07-14T08:36:26Z) - Boosting Vulnerability Detection of LLMs via Curriculum Preference Optimization with Synthetic Reasoning Data [22.557961978833386]
本稿では,脆弱性パターンのマイニングに優れた大規模言語モデル(LLM)の新たなフレームワークを提案する。
具体的には、脆弱性と対応する固定コードに対する前方および後方の推論プロセスを構築し、高品質な推論データの合成を保証する。
ReVD は LLM ベースのソフトウェア脆弱性検出のための新たな最先端技術,例えば 12.24%-22.77% の精度向上を実現している。
論文 参考訳(メタデータ) (2025-06-09T03:25:23Z) - Everything You Wanted to Know About LLM-based Vulnerability Detection But Were Afraid to Ask [30.819697001992154]
大規模言語モデルは、自動脆弱性検出のための有望なツールである。
LLMは現実世界の脆弱性を検出するのに本当に効果的か?
本稿では, LLM は (i) 信頼できないこと, (ii) コードパッチに敏感であること, (iii) モデルスケールにまたがる性能評価の3つを, 広く支持されているコミュニティの信念に異議を唱える。
論文 参考訳(メタデータ) (2025-04-18T05:32:47Z) - Benchmarking LLMs and LLM-based Agents in Practical Vulnerability Detection for Code Repositories [8.583591493627276]
JitVulは、各関数をその脆弱性導入とコミットの修正にリンクする脆弱性検出ベンチマークである。
思考・行動・観察と相互言語的文脈を活用するReAct Agentsは,良性のあるコードと区別する上で,LLMよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2025-03-05T15:22:24Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD は LLM からファクトコンフリクトの幻覚を検出するために設計されたベンチマークである。
FactCHDは、バニラ、マルチホップ、比較、セット操作など、さまざまな事実パターンにまたがる多様なデータセットを備えている。
Llama2 に基づくツール強化 ChatGPT と LoRA-tuning による反射的考察を合成する Truth-Triangulator を提案する。
論文 参考訳(メタデータ) (2023-10-18T16:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。