論文の概要: Benchmarking LLMs and LLM-based Agents in Practical Vulnerability Detection for Code Repositories
- arxiv url: http://arxiv.org/abs/2503.03586v2
- Date: Tue, 18 Mar 2025 05:30:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 16:29:11.347252
- Title: Benchmarking LLMs and LLM-based Agents in Practical Vulnerability Detection for Code Repositories
- Title(参考訳): コードリポジトリの実用的脆弱性検出における LLM と LLM ベースのエージェントのベンチマーク
- Authors: Alperen Yildiz, Sin G. Teo, Yiling Lou, Yebo Feng, Chong Wang, Dinil M. Divakaran,
- Abstract要約: JitVulは、各関数をその脆弱性導入とコミットの修正にリンクする脆弱性検出ベンチマークである。
思考・行動・観察と相互言語的文脈を活用するReAct Agentsは,良性のあるコードと区別する上で,LLMよりも優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 8.583591493627276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown promise in software vulnerability detection, particularly on function-level benchmarks like Devign and BigVul. However, real-world detection requires interprocedural analysis, as vulnerabilities often emerge through multi-hop function calls rather than isolated functions. While repository-level benchmarks like ReposVul and VulEval introduce interprocedural context, they remain computationally expensive, lack pairwise evaluation of vulnerability fixes, and explore limited context retrieval, limiting their practicality. We introduce JitVul, a JIT vulnerability detection benchmark linking each function to its vulnerability-introducing and fixing commits. Built from 879 CVEs spanning 91 vulnerability types, JitVul enables comprehensive evaluation of detection capabilities. Our results show that ReAct Agents, leveraging thought-action-observation and interprocedural context, perform better than LLMs in distinguishing vulnerable from benign code. While prompting strategies like Chain-of-Thought help LLMs, ReAct Agents require further refinement. Both methods show inconsistencies, either misidentifying vulnerabilities or over-analyzing security guards, indicating significant room for improvement.
- Abstract(参考訳): 大きな言語モデル(LLM)は、ソフトウェア脆弱性の検出、特にDevignやBigVulのような関数レベルのベンチマークにおいて、将来性を示している。
しかし、実世界の検出には、分離された関数ではなく、マルチホップ関数呼び出しを通じて脆弱性が発生するため、相互解析が必要である。
ReposVulやVulEvalのようなリポジトリレベルのベンチマークでは、相互プロシージャコンテキストが導入されているが、計算コストは高く、脆弱性修正のペアワイズ評価が欠如している。
JIT脆弱性検出ベンチマークであるJitVulを紹介します。
91の脆弱性タイプにまたがる869のCVEから構築されたJitVulは、検出機能の包括的な評価を可能にする。
この結果から,思考・行動・観察と相互言語的文脈を活用するReAct Agentsは,良性コードと区別する上で,LLMよりも優れた性能を示した。
Chain-of-Thoughtのような戦略がLCMを助ける一方で、ReAct Agentsはさらなる改善を必要としている。
どちらの方法も、脆弱性の誤認や過度に分析されるセキュリティガードといった不整合を示しており、改善の余地があることを示している。
関連論文リスト
- OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
OpenAgentSafetyは,8つの危機リスクカテゴリにまたがるエージェントの動作を評価する包括的なフレームワークである。
従来の作業とは異なり、我々のフレームワークは、Webブラウザ、コード実行環境、ファイルシステム、bashシェル、メッセージングプラットフォームなど、実際のツールと対話するエージェントを評価します。
ルールベースの分析とLSM-as-judgeアセスメントを組み合わせることで、過度な行動と微妙な不安全行動の両方を検出する。
論文 参考訳(メタデータ) (2025-07-08T16:18:54Z) - SAVANT: Vulnerability Detection in Application Dependencies through Semantic-Guided Reachability Analysis [6.989158266868967]
Java開発におけるオープンソースのサードパーティライブラリの依存関係の統合は、重大なセキュリティリスクをもたらす。
Savantは、セマンティックプリプロセッシングとLLMによるコンテキスト分析を組み合わせて、正確な脆弱性検出を行う。
Savantは83.8%の精度、73.8%のリコール、69.0%の精度、78.5%のF1スコアを達成し、最先端のSCAツールを上回っている。
論文 参考訳(メタデータ) (2025-06-21T19:48:13Z) - CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale [46.76144797837242]
大規模言語モデル(LLM)エージェントは、自律的なサイバーセキュリティタスクの処理において、ますます熟練している。
既存のベンチマークは不足していて、現実のシナリオをキャプチャできなかったり、スコープが限られていたりします。
我々はCyberGymを紹介した。CyberGymは1,507の現実世界の脆弱性を特徴とする大規模かつ高品質なサイバーセキュリティ評価フレームワークである。
論文 参考訳(メタデータ) (2025-06-03T07:35:14Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - Why Not Act on What You Know? Unleashing Safety Potential of LLMs via Self-Aware Guard Enhancement [48.50995874445193]
大規模言語モデル(LLM)は、様々なタスクにわたって印象的な機能を示しているが、細心の注意を払って構築されたジェイルブレイク攻撃には弱いままである。
SAGE(Self-Aware Guard Enhancement)は,LSMの強い安全識別性能と比較的弱い安全生成能力とを整合させる訓練不要防衛戦略である。
論文 参考訳(メタデータ) (2025-05-17T15:54:52Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLMは、敵の攻撃や情報漏洩に対する協調的なマルチエージェント防御である。
テスト時のエージェント推論システムのスケーリングは,モデルの有用性を損なうことなく,ロバスト性を大幅に向上させることを示す。
アンラーニングやジェイルブレイクを含む主要な脅威シナリオに対する総合的な評価は、AegisLLMの有効性を示している。
論文 参考訳(メタデータ) (2025-04-29T17:36:05Z) - Context-Enhanced Vulnerability Detection Based on Large Language Model [17.922081397554155]
本稿では,プログラム解析と大規模言語モデルを組み合わせたコンテキスト強化型脆弱性検出手法を提案する。
具体的には、プログラム分析を用いて、様々なレベルの抽象レベルで文脈情報を抽出し、無関係なノイズを除去する。
私たちのゴールは、脆弱性を正確に捉え、不要な複雑さを最小限に抑えるのに十分な詳細を提供することのバランスを取ることです。
論文 参考訳(メタデータ) (2025-04-23T16:54:16Z) - EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATEは、三成分アーキテクチャによるフィッシング検出を強化するフレームワークである。
既存のディープラーニング技術と同等ですが、説明性が向上しています。
自動AIとフィッシング検出システムにおけるユーザ信頼の重大な隔たりに対処する。
論文 参考訳(メタデータ) (2025-03-22T23:37:35Z) - VulnLLMEval: A Framework for Evaluating Large Language Models in Software Vulnerability Detection and Patching [0.9208007322096533]
大きな言語モデル(LLM)は、コード翻訳のようなタスクにおいて有望であることを示している。
本稿では,C コードの脆弱性を特定し,パッチする際の LLM の性能を評価するためのフレームワーク VulnLLMEval を紹介する。
私たちの研究には、Linuxカーネルから抽出された307の現実世界の脆弱性が含まれている。
論文 参考訳(メタデータ) (2024-09-16T22:00:20Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models [12.465060623389151]
本研究では,Large Language Models(LLM)の脆弱性検出機能を評価するために,新しいベンチマークであるVulDetectBenchを紹介する。
このベンチマークは、LLMの脆弱性を特定し、分類し、発見する能力を、難易度を高める5つのタスクを通じて総合的に評価している。
本ベンチマークでは,脆弱性検出の特定のタスクにおいて,様々なLLMの能力評価を効果的に行うとともに,コードセキュリティの重要領域における今後の研究と改善の基盤となる。
論文 参考訳(メタデータ) (2024-06-11T13:42:57Z) - VulEval: Towards Repository-Level Evaluation of Software Vulnerability Detection [14.312197590230994]
textbfVulEvalという名前のリポジトリレベルの評価システムは、プロセス間およびプロセス内脆弱性の検出性能を同時に評価することを目的としている。
VulEvalは大規模データセットで構成され、合計で4,196のCVEエントリ、232,239の関数、および対応する4,699のリポジトリレベルのソースコードがC/C++プログラミング言語に含まれる。
論文 参考訳(メタデータ) (2024-04-24T02:16:11Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。
それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
論文 参考訳(メタデータ) (2024-02-07T17:33:54Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。