論文の概要: Forecasting Energy Availability in Local Energy Communities via LSTM Federated Learning
- arxiv url: http://arxiv.org/abs/2602.00694v1
- Date: Sat, 31 Jan 2026 12:41:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.340518
- Title: Forecasting Energy Availability in Local Energy Communities via LSTM Federated Learning
- Title(参考訳): LSTMフェデレーションラーニングによる地域エネルギーコミュニティのエネルギー利用予測
- Authors: Fabio Turazza, Marcello Pietri, Natalia Selini Hadjidimitriou, Marco Mamei,
- Abstract要約: 地域エネルギーコミュニティは、持続可能な発展のランドスケープにおいて重要な役割を担っている。
この課題に対処するためには、正確な予測を提供する予測モデルの開発と実装が不可欠である。
予測ソリューションの適用は、しばしばプライバシーの制約や規制によって妨げられる。
- 参考スコア(独自算出の注目度): 4.063349526787634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local Energy Communities are emerging as crucial players in the landscape of sustainable development. A significant challenge for these communities is achieving self-sufficiency through effective management of the balance between energy production and consumption. To meet this challenge, it is essential to develop and implement forecasting models that deliver accurate predictions, which can then be utilized by optimization and planning algorithms. However, the application of forecasting solutions is often hindered by privacy constrains and regulations as the users participating in the Local Energy Community can be (rightfully) reluctant sharing their consumption patterns with others. In this context, the use of Federated Learning (FL) can be a viable solution as it allows to create a forecasting model without the need to share privacy sensitive information among the users. In this study, we demonstrate how FL and long short-term memory (LSTM) networks can be employed to achieve this objective, highlighting the trade-off between data sharing and forecasting accuracy.
- Abstract(参考訳): 地域エネルギーコミュニティは、持続可能な開発環境において重要な役割を担っている。
これらのコミュニティにとって重要な課題は、エネルギー生産と消費のバランスを効果的に管理することで自己充足性を達成することである。
この課題に対処するためには,正確な予測を行う予測モデルを開発し,実装することが不可欠である。
しかし、地域エネルギーコミュニティの利用者は(当然のことながら)他者との消費パターンの共有に消極的になるため、予測ソリューションの適用はプライバシーの制約や規制によって妨げられることが多い。
このような状況下では、ユーザ間でプライバシに敏感な情報を共有する必要なく、予測モデルを作成することができるため、フェデレートラーニング(FL)の使用は実行可能なソリューションになり得る。
本研究では,データ共有と予測精度のトレードオフを浮き彫りにして,FLとLong Short-term memory(LSTM)ネットワークを用いて,この目的を達成する方法を示す。
関連論文リスト
- Federated Attention: A Distributed Paradigm for Collaborative LLM Inference over Edge Networks [63.541114376141735]
大規模言語モデル(LLM)は、さまざまなアプリケーションシナリオにまたがってインテリジェントな機能を提供しながら、急速に普及しています。
しかし、彼らの共同シナリオにおける実践的なデプロイは、プライバシの脆弱性、通信オーバーヘッド、計算ボトルネックといった根本的な課題に直面します。
我々はフェデレート・アテンション(FedAttn)を提案し、フェデレーション・パラダイムを自己注意機構に統合する。
論文 参考訳(メタデータ) (2025-11-04T15:14:58Z) - From Dense to Sparse: Event Response for Enhanced Residential Load Forecasting [48.22398304557558]
住宅負荷予測のためのイベント応答型知識ガイド手法(ERKG)を提案する。
ERKGは、異なる家電の電力使用状況の推定、負荷系列からのイベント関連スパース知識のマイニングを取り入れている。
論文 参考訳(メタデータ) (2025-01-06T05:53:38Z) - TinyML NLP Scheme for Semantic Wireless Sentiment Classification with Privacy Preservation [49.801175302937246]
本研究は、エッジデバイスにプライバシ保護、エネルギー効率の高いNLPモデルをデプロイする際の洞察を提供する。
セマンティックスプリットラーニング(SL)を,エネルギー効率,プライバシ保護,小型機械学習(TinyML)フレームワークとして導入する。
その結果,FLの4倍,CLの約18倍の再現誤差の増加により,SLは計算能力とCO2排出量を著しく低減し,プライバシーの向上を図った。
論文 参考訳(メタデータ) (2024-11-09T21:26:59Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - FedTrees: A Novel Computation-Communication Efficient Federated Learning
Framework Investigated in Smart Grids [8.437758224218648]
次世代のスマートメーターは、エネルギー消費データの測定、記録、および報告に使用することができる。
FedTreesは、アンサンブル学習の際立った特徴の恩恵を受ける、新しくて軽量なFLフレームワークである。
論文 参考訳(メタデータ) (2022-09-30T19:47:46Z) - FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy
Providers [1.1254693939127909]
我々は、エネルギー負荷予測のための新しい水平プライバシー保護フェデレーション学習フレームワーク、フェデレーション(FedREP)を提案する。
我々は、複数のREPがデータを共有することなく、共通の堅牢な機械学習モデルを構築することを可能にすることにより、制御センタと複数の小売業者からなる連合学習システムを考える。
予測には、長期の観測シーケンスを学習できるため、最先端のLong Short-Term Memory(LSTM)ニューラルネットワークを使用する。
論文 参考訳(メタデータ) (2022-03-01T04:16:19Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
エネルギー需要予測は、需要と供給のバランスを保ち、電力網の安定的な負荷を維持するためにエネルギー産業内で実施される重要な課題である。
供給が信頼性の低い再生可能エネルギー生成へと移行するにつれ、スマートメーターはこれらの予測タスクを支援する上で不可欠な要素であることが証明される。
しかし、プライバシーを意識した消費者は、詳細な消費データへの侵入を恐れている。
論文 参考訳(メタデータ) (2021-05-27T17:33:09Z) - Empowering Prosumer Communities in Smart Grid with Wireless
Communications and Federated Edge Learning [5.289693272967054]
分散型エネルギー資源の指数関数的な成長は、スマートグリッドにおける従来の消費者のプロシューマーへの転換を可能にする。
消費者コミュニティが集合的目標を達成するためのマルチレベルの意思決定フレームワークを提案する。
プロシューマーのプライバシの保護に加えて,フェデレーション学習を用いた学習予測モデルが,異なるエネルギー資源に対して高い精度をもたらすことを示す。
論文 参考訳(メタデータ) (2021-04-07T14:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。