論文の概要: FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy
Providers
- arxiv url: http://arxiv.org/abs/2203.00219v2
- Date: Tue, 28 Mar 2023 12:58:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 20:14:06.966409
- Title: FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy
Providers
- Title(参考訳): FedREP:小売エネルギープロバイダ向け水平フェデレート負荷予測に向けて
- Authors: Muhammad Akbar Husnoo, Adnan Anwar, Nasser Hosseinzadeh, Shama Naz
Islam, Abdun Naser Mahmood, Robin Doss
- Abstract要約: 我々は、エネルギー負荷予測のための新しい水平プライバシー保護フェデレーション学習フレームワーク、フェデレーション(FedREP)を提案する。
我々は、複数のREPがデータを共有することなく、共通の堅牢な機械学習モデルを構築することを可能にすることにより、制御センタと複数の小売業者からなる連合学習システムを考える。
予測には、長期の観測シーケンスを学習できるため、最先端のLong Short-Term Memory(LSTM)ニューラルネットワークを使用する。
- 参考スコア(独自算出の注目度): 1.1254693939127909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Smart Meters are collecting and transmitting household energy consumption
data to Retail Energy Providers (REP), the main challenge is to ensure the
effective use of fine-grained consumer data while ensuring data privacy. In
this manuscript, we tackle this challenge for energy load consumption
forecasting in regards to REPs which is essential to energy demand management,
load switching and infrastructure development. Specifically, we note that
existing energy load forecasting is centralized, which are not scalable and
most importantly, vulnerable to data privacy threats. Besides, REPs are
individual market participants and liable to ensure the privacy of their own
customers. To address this issue, we propose a novel horizontal
privacy-preserving federated learning framework for REPs energy load
forecasting, namely FedREP. We consider a federated learning system consisting
of a control centre and multiple retailers by enabling multiple REPs to build a
common, robust machine learning model without sharing data, thus addressing
critical issues such as data privacy, data security and scalability. For
forecasting, we use a state-of-the-art Long Short-Term Memory (LSTM) neural
network due to its ability to learn long term sequences of observations and
promises of higher accuracy with time-series data while solving the vanishing
gradient problem. Finally, we conduct extensive data-driven experiments using a
real energy consumption dataset. Experimental results demonstrate that our
proposed federated learning framework can achieve sufficient performance in
terms of MSE ranging between 0.3 to 0.4 and is relatively similar to that of a
centralized approach while preserving privacy and improving scalability.
- Abstract(参考訳): スマートメータは家庭用エネルギー消費データを小売エネルギープロバイダ(rep)に収集し、送信しているため、データプライバシを確保しながら、きめ細かい消費者データの有効利用を確保することが主な課題である。
本稿では,エネルギー需要管理,負荷切り換え,インフラ開発に不可欠なrepについて,エネルギー負荷消費量予測のためのこの課題に取り組む。
具体的には、既存のエネルギー負荷予測は集中的であり、スケーラビリティがなく、最も重要なのは、データプライバシの脅威に弱いことだ。
さらに、REPは個々の市場参加者であり、自身の顧客のプライバシーを確保する責任がある。
この問題に対処するため、我々はREPのエネルギー負荷予測、すなわちFedREPのための水平プライバシー保護フェデレーション学習フレームワークを提案する。
データを共有することなく、複数のREPが共通の堅牢な機械学習モデルを構築し、データプライバシやデータセキュリティ、スケーラビリティといった重要な問題に対処することで、制御センタと複数の小売業者からなる連合学習システムを考える。
予測には,最先端のlong short-term memory(lstm)ニューラルネットワークを用いる。これは,観測の長期シーケンスを学習する能力と,消失する勾配問題を解きながら時系列データによる精度向上が期待できるためである。
最後に,実エネルギー消費データセットを用いて広範なデータ駆動実験を行う。
実験の結果,提案する連合学習フレームワークは0.3~0.4の範囲のmseで十分な性能を達成でき,プライバシを保ちスケーラビリティを向上しつつ,集中型アプローチのそれと比較的類似していることがわかった。
関連論文リスト
- Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning [51.02352381270177]
Split Federated Learning (SFL)は、最近、有望な分散学習技術として登場した。
SFLにおけるカット層の選択は、クライアントのエネルギー消費とプライバシに大きな影響を与える可能性がある。
本稿では、SFLプロセスの概要を概観し、エネルギー消費とプライバシを徹底的に分析する。
論文 参考訳(メタデータ) (2023-11-15T23:23:42Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
本稿では,フェデレート学習モデルについて紹介する。フェデレーション学習モデルは,プロシューマーエネルギーデータに基づいて訓練された局所ニューラルネットワークモデルの重みから,グローバル予測モデルを集約する。
その結果,FedAVGと比較して,MSEでは25%,MAEでは16%の精度でエネルギー予測モデルの精度を効果的に向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-19T05:44:18Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - FedTrees: A Novel Computation-Communication Efficient Federated Learning
Framework Investigated in Smart Grids [8.437758224218648]
次世代のスマートメーターは、エネルギー消費データの測定、記録、および報告に使用することができる。
FedTreesは、アンサンブル学習の際立った特徴の恩恵を受ける、新しくて軽量なFLフレームワークである。
論文 参考訳(メタデータ) (2022-09-30T19:47:46Z) - DER Forecast using Privacy Preserving Federated Learning [0.0]
分散機械学習アプローチであるFederated Learningを提案し、IoTノードのネットワークを使用してDER予測を実行する。
提案手法が消費者プライバシ保護の正確な予測に繋がることを示すため,1000 DER を含むシミュレーション研究を考察する。
論文 参考訳(メタデータ) (2021-07-07T14:25:43Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
エネルギー需要予測は、需要と供給のバランスを保ち、電力網の安定的な負荷を維持するためにエネルギー産業内で実施される重要な課題である。
供給が信頼性の低い再生可能エネルギー生成へと移行するにつれ、スマートメーターはこれらの予測タスクを支援する上で不可欠な要素であることが証明される。
しかし、プライバシーを意識した消費者は、詳細な消費データへの侵入を恐れている。
論文 参考訳(メタデータ) (2021-05-27T17:33:09Z) - Realistic Differentially-Private Transmission Power Flow Data Release [12.425053979364362]
送電ではなく, グリッド損失の公開情報を用いて, 根本的に異なるポストプロセッシング手法を提案する。
直列インピーダンスに加えて、より敏感なパラメータ、すなわち分岐短命を保護します。
我々のアプローチは、より実現可能で現実的なシナリオに対処し、最先端のプライバシー保証よりも高いものを提供します。
論文 参考訳(メタデータ) (2021-03-25T04:04:12Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。