論文の概要: Harmful Overfitting in Sobolev Spaces
- arxiv url: http://arxiv.org/abs/2602.00825v1
- Date: Sat, 31 Jan 2026 17:40:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.420406
- Title: Harmful Overfitting in Sobolev Spaces
- Title(参考訳): ソボレフ空間における有害なオーバーフィッティング
- Authors: Kedar Karhadkar, Alexander Sietsema, Deanna Needell, Guido Montufar,
- Abstract要約: ソボレフ空間$Wk, p(mathbbRd)$における関数の一般化挙動を、ノイズの多いトレーニングデータセットに完全に適合するものとして研究する。
約ノルム最小化補間器は、滑らかさバイアスによって選択される正準解であり、有害なオーバーフィッティングを示す。
我々の証明では,ソボレフの不等式を用いたトレーニングデータの有害な近傍を同定する幾何学的議論を用いている。
- 参考スコア(独自算出の注目度): 49.47221415754556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by recent work on benign overfitting in overparameterized machine learning, we study the generalization behavior of functions in Sobolev spaces $W^{k, p}(\mathbb{R}^d)$ that perfectly fit a noisy training data set. Under assumptions of label noise and sufficient regularity in the data distribution, we show that approximately norm-minimizing interpolators, which are canonical solutions selected by smoothness bias, exhibit harmful overfitting: even as the training sample size $n \to \infty$, the generalization error remains bounded below by a positive constant with high probability. Our results hold for arbitrary values of $p \in [1, \infty)$, in contrast to prior results studying the Hilbert space case ($p = 2$) using kernel methods. Our proof uses a geometric argument which identifies harmful neighborhoods of the training data using Sobolev inequalities.
- Abstract(参考訳): 過度パラメータ化された機械学習における良性過剰適合に関する最近の研究により、ソボレフ空間$W^{k, p}(\mathbb{R}^d)$における関数の一般化挙動を、ノイズの多いトレーニングデータセットに完全に適合するものとして研究した。
ラベルノイズとデータ分布の十分な正則性の仮定の下で、滑らかさバイアスによって選択された正準解である約ノルム最小化補間器は有害なオーバーフィッティングを示し、たとえトレーニングサンプルサイズ$n \to \infty$であっても、一般化誤差は高い確率で正の定数で下限に保たれる。
我々の結果は、カーネル法を用いてヒルベルト空間の場合(p = 2$)を研究する事前の結果とは対照的に、$p \in [1, \infty)$の任意の値を保持する。
我々の証明では,ソボレフの不等式を用いたトレーニングデータの有害な近傍を同定する幾何学的議論を用いている。
関連論文リスト
- Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator [49.87315310656657]
我々は, 局所曲率をサンプルで探索し, 周辺面積を適応的に定義する適応型$k$-nearest(kK$-NN)アルゴリズムを提案する。
多くの実世界のデータセットから、新しい$kK$-NNアルゴリズムは、確立された$k$-NN法と比較してバランスの取れた精度が優れていることが示されている。
論文 参考訳(メタデータ) (2024-09-08T13:08:45Z) - A Combinatorial Approach to Robust PCA [18.740048806623037]
敵の汚職下でのガウスデータの回復問題について検討する。
ガウスノイズは未知の$k$-次元部分空間$U subseteq mathbbRd$と、各データポイントのランダムに選択された座標が敵の制御に該当すると仮定する。
我々の主な結果は、$ks2 = O(d)$のとき、期待して$tilde O(ks/d)$のほぼ最適エラーまですべてのデータポイントを復元する効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2023-11-28T01:49:51Z) - Random Smoothing Regularization in Kernel Gradient Descent Learning [24.383121157277007]
古典的ソボレフ空間に属する幅広い基底真理関数を適応的に学習できるランダムなスムーズな正規化のための枠組みを提案する。
我々の推定器は、基礎となるデータの構造的仮定に適応し、次元の呪いを避けることができる。
論文 参考訳(メタデータ) (2023-05-05T13:37:34Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
一般化線形モデルの設定におけるオンライン一般化線形回帰の問題について検討する。
ラベルノイズに対処するため、古典的追従正規化リーダ(FTRL)アルゴリズムを鋭く解析する。
本稿では,FTRLに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-28T08:25:26Z) - Generalization in Supervised Learning Through Riemannian Contraction [4.3604518673788135]
教師付き学習環境では、計量 0 がアセシアンレート $lambda で収縮している場合、それは一様に$math であることを示す。
結果は、連続および安定な $-time において、勾配と決定論的損失曲面を保っている。
それらは、Descent$凸面や強い凸損失面など、ある種の線形な設定で最適であることを示すことができる。
論文 参考訳(メタデータ) (2022-01-17T23:08:47Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Localization, Convexity, and Star Aggregation [0.0]
オフセットラデマッハ複体は、正方形損失に対する鋭く線形依存的な上界を示すことが示されている。
統計的設定では、オフセット境界は一定の均一な凸性を満たす任意の損失に一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-05-19T00:47:59Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。