論文の概要: Inferential Question Answering
- arxiv url: http://arxiv.org/abs/2602.01239v1
- Date: Sun, 01 Feb 2026 14:02:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.673497
- Title: Inferential Question Answering
- Title(参考訳): 推論質問に対する回答
- Authors: Jamshid Mozafari, Hamed Zamani, Guido Zuccon, Adam Jatowt,
- Abstract要約: 新しいタスクであるInferential QAを導入します。これは、答えをサポートするパスから答えを推測するためにモデルに挑戦するものです。
そこで本研究では,7,401問と2.4M節からなるQUITデータセットを構築した。
我々は,従来のQAタスクに有効な手法が推論QAに苦しむことを示し,レトリバーは性能が低下し,リランカーは利得が制限され,微調整は不整合の改善をもたらすことを示した。
- 参考スコア(独自算出の注目度): 67.54465021408724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite extensive research on a wide range of question answering (QA) systems, most existing work focuses on answer containment-i.e., assuming that answers can be directly extracted and/or generated from documents in the corpus. However, some questions require inference, i.e., deriving answers that are not explicitly stated but can be inferred from the available information. We introduce Inferential QA -- a new task that challenges models to infer answers from answer-supporting passages which provide only clues. To study this problem, we construct QUIT (QUestions requiring Inference from Texts) dataset, comprising 7,401 questions and 2.4M passages built from high-convergence human- and machine-authored hints, labeled across three relevance levels using LLM-based answerability and human verification. Through comprehensive evaluation of retrievers, rerankers, and LLM-based readers, we show that methods effective on traditional QA tasks struggle in inferential QA: retrievers underperform, rerankers offer limited gains, and fine-tuning provides inconsistent improvements. Even reasoning-oriented LLMs fail to outperform smaller general-purpose models. These findings reveal that current QA pipelines are not yet ready for inference-based reasoning. Inferential QA thus establishes a new class of QA tasks that move towards understanding and reasoning from indirect textual evidence.
- Abstract(参考訳): 広範囲にわたる質問応答システム(QA)の研究にもかかわらず、既存の研究の多くは、回答をコーパス内の文書から直接抽出または/または生成できると仮定して、回答の含意に焦点を当てている。
しかし、いくつかの質問は推論を必要とし、すなわち、明示的に明記されていないが利用可能な情報から推測できる答えを導き出す。
新しいタスクであるInferential QAを導入します。これは、答えをサポートするパスから答えを推測するためにモデルに挑戦するものです。
そこで本研究では,LLMに基づく回答可能性と人間検証を用いて,3つの関連レベルにラベル付けされた高収束な人間と機械によるヒントから構築した,7,401の質問と2.4MのパスからなるQUITデータセットを構築した。
検索者,リランカ,LLMベースの読者の総合的な評価を通じて,従来のQAタスクに有効な手法が推論QAに苦しむことを示す。
推論指向のLLMでさえ、より小さな汎用モデルよりも優れている。
これらの結果から,現在のQAパイプラインはまだ推論に基づく推論の準備が整っていないことが明らかとなった。
推論QAは、間接的なテキスト証拠から理解と推論へと移行する新しいQAタスクのクラスを確立する。
関連論文リスト
- NeoQA: Evidence-based Question Answering with Generated News Events [53.85274258429368]
この問題に対処するために設計されたベンチマークであるNeoQAを紹介します。
我々は,エビデンスに基づく質問応答を評価するための新しいプラットフォームとして,データセットを提案する。
論文 参考訳(メタデータ) (2025-05-09T10:51:29Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
本稿では,VQAタスクに対する推論質問プロンプトを提案する。
自己完結した質問は、教師なし質問セットモジュールを介して推論された質問プロンプトとして生成する。
各推論質問は、元の質問の意図を明確に示す。
そして、回答整合性として働く信頼度スコアに関連する候補回答をLSMに入力する。
論文 参考訳(メタデータ) (2023-11-15T15:40:46Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - Modern Question Answering Datasets and Benchmarks: A Survey [5.026863544662493]
質問回答(QA)は、自然言語処理(NLP)の最も重要なタスクの一つである。
NLP技術を用いて、大量の非構造化コーパスに基づいて、与えられた質問に対する対応する回答を生成することを目的としている。
本稿では,ディープラーニングの時代にリリースされた,影響力あるQAデータセットについて検討する。
論文 参考訳(メタデータ) (2022-06-30T05:53:56Z) - ASQA: Factoid Questions Meet Long-Form Answers [35.11889930792675]
この研究は、解釈によって異なる正しい答えを持つ、あいまいな事実型問題に焦点を当てている。
曖昧な質問に対する回答は、複数の情報源からの事実情報を長文の要約にまとめるべきである。
我々は、この正確性の概念を用いて、ASQAのパフォーマンスの自動測定基準を定義します。
論文 参考訳(メタデータ) (2022-04-12T21:58:44Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
質問生成 (QG) とは, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、
我々は、自由なニュース要約データを使用し、宣言文を依存性解析、名前付きエンティティ認識、セマンティックロールラベリングを用いて適切な質問に変換する。
得られた質問は、元のニュース記事と組み合わせて、エンドツーエンドのニューラルQGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-09-16T13:08:43Z) - Hurdles to Progress in Long-form Question Answering [34.805039943215284]
タスクの定式化は評価とデータセットの作成に関する根本的な課題を提起する。
まず,最先端性能を実現するために,注意の疎化とコントラストレトリバー学習による新しいシステムを設計する。
論文 参考訳(メタデータ) (2021-03-10T20:32:30Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
教師なし質問回答(QA)を改善するための2つのアプローチを提案する。
まず、ウィキペディアから語彙的・構文的に異なる質問を抽出し、質問応答対のコーパスを自動的に構築する(RefQAと名づけられる)。
第2に、より適切な回答を抽出するためにQAモデルを活用し、RefQA上でデータを反復的に洗練する。
論文 参考訳(メタデータ) (2020-05-06T15:56:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。