論文の概要: Modern Question Answering Datasets and Benchmarks: A Survey
- arxiv url: http://arxiv.org/abs/2206.15030v1
- Date: Thu, 30 Jun 2022 05:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 14:03:06.280772
- Title: Modern Question Answering Datasets and Benchmarks: A Survey
- Title(参考訳): データセットとベンチマークに関する最新の質問:調査
- Authors: Zhen Wang
- Abstract要約: 質問回答(QA)は、自然言語処理(NLP)の最も重要なタスクの一つである。
NLP技術を用いて、大量の非構造化コーパスに基づいて、与えられた質問に対する対応する回答を生成することを目的としている。
本稿では,ディープラーニングの時代にリリースされた,影響力あるQAデータセットについて検討する。
- 参考スコア(独自算出の注目度): 5.026863544662493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question Answering (QA) is one of the most important natural language
processing (NLP) tasks. It aims using NLP technologies to generate a
corresponding answer to a given question based on the massive unstructured
corpus. With the development of deep learning, more and more challenging QA
datasets are being proposed, and lots of new methods for solving them are also
emerging. In this paper, we investigate influential QA datasets that have been
released in the era of deep learning. Specifically, we begin with introducing
two of the most common QA tasks - textual question answer and visual question
answering - separately, covering the most representative datasets, and then
give some current challenges of QA research.
- Abstract(参考訳): 質問回答(QA)は、自然言語処理(NLP)の最も重要なタスクの一つである。
NLP技術を用いて、大量の非構造化コーパスに基づいて、与えられた質問に対する対応する回答を生成する。
ディープラーニングの開発に伴い、より困難なQAデータセットが提案され、それを解決する新しい方法が数多く登場しています。
本稿では,ディープラーニングの時代にリリースされた,影響力あるQAデータセットについて検討する。
具体的には、テキスト質問応答と視覚質問応答という2つの最も一般的なQAタスクを別々に導入し、最も代表的なデータセットをカバーし、そして、現在のQA研究の課題を提示します。
関連論文リスト
- Can a Multichoice Dataset be Repurposed for Extractive Question Answering? [52.28197971066953]
我々は,Multiple-choice Question answering (MCQA)のために設計されたBandarkar et al.(Bandarkar et al., 2023)を再利用した。
本稿では,英語と現代標準アラビア語(MSA)のためのガイドラインと並列EQAデータセットを提案する。
私たちの目標は、ベレベレにおける120以上の言語変異に対して、他者が私たちのアプローチを適応できるようにすることです。
論文 参考訳(メタデータ) (2024-04-26T11:46:05Z) - Automatic Question-Answer Generation for Long-Tail Knowledge [65.11554185687258]
テールエンティティのための特別なQAデータセットを生成するための自動アプローチを提案する。
我々は,新たに生成された長尾QAデータセットに事前学習したLLMを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-03-03T03:06:31Z) - Long-form Question Answering: An Iterative Planning-Retrieval-Generation
Approach [28.849548176802262]
長文質問応答(LFQA)は,段落の形で詳細な回答を生成するため,課題となる。
本稿では,反復計画,検索,生成を伴うLFQAモデルを提案する。
我々のモデルはLFQAタスクの様々なテキストおよび実測値の最先端モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-15T21:22:27Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
本稿ではUNK-VQAと呼ばれる包括的データセットを提案する。
まず、画像または疑問について意図的に摂動することで、既存のデータを拡大する。
そこで我々は,新たなマルチモーダル大規模モデルのゼロショット性能と少数ショット性能を広範囲に評価した。
論文 参考訳(メタデータ) (2023-10-17T02:38:09Z) - Improving Question Answering with Generation of NQ-like Questions [12.276281998447079]
QA ( Question Answering) システムは大量の注釈付きデータを必要とする。
本研究では,Quizbowl(QB)データセットの長いトリビア質問からNatural Questions(NQ)データセットにおいて,日々のコミュニケーションに似た短い質問を自動的に生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-12T21:36:20Z) - Question Answering Survey: Directions, Challenges, Datasets, Evaluation
Matrices [0.0]
QA分野の研究の方向性は,質問の種類,回答の種類,根拠の源泉,モデリングアプローチに基づいて分析される。
これに続き、自動質問生成、類似性検出、言語に対する低リソース可用性など、この分野のオープンな課題が続きます。
論文 参考訳(メタデータ) (2021-12-07T08:53:40Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
知識ベース(KB)に対する質問回答(QA)は、自然言語の質問に自動的に答えることを目的としている。
研究者は、よりKBのトリプルと制約推論を必要とする単純な質問から複雑な質問へと注意を移した。
論文 参考訳(メタデータ) (2020-07-26T07:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。