論文の概要: Autonomous Question Formation for Large Language Model-Driven AI Systems
- arxiv url: http://arxiv.org/abs/2602.01556v1
- Date: Mon, 02 Feb 2026 02:49:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.850795
- Title: Autonomous Question Formation for Large Language Model-Driven AI Systems
- Title(参考訳): 大規模言語モデル駆動型AIシステムのための自律質問生成
- Authors: Hong Su,
- Abstract要約: 大規模言語モデル(LLM)駆動のAIシステムは、動的かつオープンな環境での自律的な意思決定においてますます重要になっている。
我々は,AIシステムが自律的に質問を作成し,タスクを設定することを可能にする,人間シミュレーションベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.11844977816228043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM)-driven AI systems are increasingly important for autonomous decision-making in dynamic and open environments. However, most existing systems rely on predefined tasks and fixed prompts, limiting their ability to autonomously identify what problems should be solved when environmental conditions change. In this paper, we propose a human-simulation-based framework that enables AI systems to autonomously form questions and set tasks by reasoning over their internal states, environmental observations, and interactions with other AI systems. The proposed method treats question formation as a first-class decision process preceding task selection and execution, and integrates internal-driven, environment-aware, and inter-agent-aware prompting scopes to progressively expand cognitive coverage. In addition, the framework supports learning the question-formation process from experience, allowing the system to improve its adaptability and decision quality over time. xperimental results in a multi-agent simulation environment show that environment-aware prompting significantly reduces no-eat events compared with the internal-driven baseline, and inter-agent-aware prompting further reduces cumulative no-eat events by more than 60% over a 20-day simulation, with statistically significant improvements (p < 0.05).
- Abstract(参考訳): 大規模言語モデル(LLM)駆動のAIシステムは、動的かつオープンな環境での自律的な意思決定においてますます重要になっている。
しかし、既存のシステムの多くは、事前に定義されたタスクと固定されたプロンプトに依存しており、環境条件が変化したときに解決すべき問題を自律的に特定する能力を制限する。
本稿では,AIシステムの内部状態,環境観測,他のAIシステムとのインタラクションを推論することで,質問やタスクを自律的に作成できる人間シミュレーションベースのフレームワークを提案する。
提案手法は,課題選択と実行に先立って,質問形成を第1級決定プロセスとして扱い,内部駆動型,環境認識,エージェント間認識を統合し,認知的カバレッジを段階的に拡大する。
さらに、このフレームワークは、経験から質問生成プロセスを学ぶことをサポートし、システムは時間とともに適応性と意思決定品質を向上させることができる。
Xperimental results in a multi-agent Simulation environment showed that environment-aware prompting prompts no-Eat events than the internal-driven baseline, and inter-agent-aware prompting further reduce cumulative no-Eat events over a 20-day Simulation, with statistically significant improvements (p < 0.05)。
関連論文リスト
- Barbarians at the Gate: How AI is Upending Systems Research [58.95406995634148]
システム研究は、新しいパフォーマンス指向アルゴリズムの設計と評価に長年注力してきたが、AI駆動のソリューション発見には特に適している、と私たちは主張する。
このアプローチをAI駆動システム研究(ADRS)と呼び、ソリューションを反復的に生成し、評価し、洗練する。
我々の研究結果は、AI時代のシステム研究の実践に急激な適応の必要性と破壊的な可能性を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-10-07T17:49:24Z) - A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems [53.37728204835912]
既存のAIシステムは、デプロイ後も静的な手作業による構成に依存している。
近年,インタラクションデータと環境フィードバックに基づいてエージェントシステムを自動拡張するエージェント進化手法が研究されている。
この調査は、自己進化型AIエージェントの体系的な理解を研究者や実践者に提供することを目的としている。
論文 参考訳(メタデータ) (2025-08-10T16:07:32Z) - Taming Uncertainty via Automation: Observing, Analyzing, and Optimizing Agentic AI Systems [1.9751175705897066]
大規模言語モデル (LLMs) はエージェントシステムにますます展開され、対話型のLLMエージェントは複雑で、メモリ、ツール、動的プランニングを用いて適応的に実行される。
従来のソフトウェアオブザーバビリティと運用プラクティスは、これらの課題に対処するには不十分です。
本稿ではエージェントAIシステムの動作を観察し、分析し、最適化し、自動化するための総合的なフレームワークであるAgentOpsを紹介する。
論文 参考訳(メタデータ) (2025-07-15T12:54:43Z) - Multi-agent Embodied AI: Advances and Future Directions [46.23631919950584]
エンボディード人工知能(Embodied AI)は、インテリジェントな時代における先進技術の適用において重要な役割を担っている。
本稿では,研究の現状を概観し,重要な貢献を分析し,課題と今後の方向性を明らかにする。
論文 参考訳(メタデータ) (2025-05-08T10:13:53Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。