論文の概要: Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022
- arxiv url: http://arxiv.org/abs/2202.04787v1
- Date: Thu, 10 Feb 2022 01:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-11 15:59:36.344656
- Title: Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022
- Title(参考訳): ロバスト人工知能システム保証(RAISA)ワークショップ2022の成果
- Authors: Olivia Brown, Brad Dillman
- Abstract要約: RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Robust Artificial Intelligence System Assurance (RAISA) workshop will
focus on research, development and application of robust artificial
intelligence (AI) and machine learning (ML) systems. Rather than studying
robustness with respect to particular ML algorithms, our approach will be to
explore robustness assurance at the system architecture level, during both
development and deployment, and within the human-machine teaming context. While
the research community is converging on robust solutions for individual AI
models in specific scenarios, the problem of evaluating and assuring the
robustness of an AI system across its entire life cycle is much more complex.
Moreover, the operational context in which AI systems are deployed necessitates
consideration of robustness and its relation to principles of fairness,
privacy, and explainability.
- Abstract(参考訳): robust artificial intelligence system assurance (raisa) workshopは、ロバストな人工知能(ai)と機械学習(ml)システムの研究、開発、応用に焦点を当てる。
私たちのアプローチは、特定のmlアルゴリズムに関して堅牢性を研究するのではなく、システムアーキテクチャレベルで、開発とデプロイメントの両方、そしてヒューマンマシン・チーム・コンテキスト内で堅牢性を保証することにあります。
研究コミュニティは特定のシナリオにおける個々のAIモデルに対するロバストなソリューションを集約しているが、AIシステムのライフサイクル全体にわたるロバスト性の評価と保証の問題は、はるかに複雑である。
さらに、AIシステムがデプロイされる運用コンテキストは、堅牢性とその公正性、プライバシ、説明可能性の原則との関係を考慮する必要がある。
関連論文リスト
- Reliability, Resilience and Human Factors Engineering for Trustworthy AI Systems [6.120331132009475]
私たちは、確立した信頼性とレジリエンスエンジニアリングの原則をAIシステムに統合するフレームワークを提供しています。
本稿では,AIシステムの性能管理と障害の防止,あるいは効率よく復旧する統合フレームワークを提案する。
当社のフレームワークを,OpenAIなどのプラットフォームからのシステムステータスデータを用いて,現実的なAIシステムに適用し,その実用性を示す。
論文 参考訳(メタデータ) (2024-11-13T19:16:44Z) - Operating System And Artificial Intelligence: A Systematic Review [17.256378758253437]
我々は、AI駆動のツールがOSのパフォーマンス、セキュリティ、効率をいかに向上させるかを検討する一方、OSの進歩はより洗練されたAIアプリケーションを促進する。
メモリ管理やプロセススケジューリング,侵入検出など,OSの機能最適化に使用されるさまざまなAI技術を分析した。
我々はIntelligent OSの有望な展望を探求し、革新的なOSアーキテクチャがいかに画期的な機会の道を開くかだけでなく、AIがこれらの次世代OSの発展にどのように貢献するかについても検討する。
論文 参考訳(メタデータ) (2024-07-19T05:29:34Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
論文 参考訳(メタデータ) (2024-04-07T07:05:59Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z) - Developing and Operating Artificial Intelligence Models in Trustworthy
Autonomous Systems [8.27310353898034]
このワーク・イン・プログレス・ペーパーはAIベースのASの開発と運用のギャップを埋めることを目的としている。
私たちはそれを実践するために、新しく包括的なDevOpsアプローチを提案します。
論文 参考訳(メタデータ) (2020-03-11T17:52:30Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。