論文の概要: Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
- arxiv url: http://arxiv.org/abs/2602.02067v1
- Date: Mon, 02 Feb 2026 13:07:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:34.159565
- Title: Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
- Title(参考訳): 実世界臨床データを用いたトランスフォーマーを用いたマルチインスタンス学習を利用した多視点狭窄分類
- Authors: Nikola Cenikj, Özgün Turgut, Alexander Müller, Alexander Steger, Jan Kehrer, Marcus Brugger, Daniel Rueckert, Eimo Martens, Philip Müller,
- Abstract要約: 冠動脈狭窄は心血管疾患の主要な原因であり,多発血管造影で冠動脈を解析し診断した。
患者レベルの狭窄分類のためのトランスフォーマーベースマルチビューマルチインスタンス学習フレームワークであるSegmentMILを提案する。
- 参考スコア(独自算出の注目度): 76.89269238957593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
- Abstract(参考訳): 冠動脈狭窄は心血管疾患の主要な原因であり,多発血管造影で冠動脈を解析し診断した。
単一の血管造影から狭窄を検出するための多くのディープラーニングモデルが提案されているが、その性能は高価なビューレベルのアノテーションに大きく依存しており、病院システムでは利用できないことが多い。
さらに、これらのモデルでは、臨床診断に欠かせない複数の視点の時間的ダイナミクスや依存性を捉えることができない。
そこで本研究では,患者レベルの狭窄分類のためのマルチビューマルチインスタンス学習フレームワークであるSegmentMILを提案する。
実際の臨床データセットに基づいてトレーニングされ、患者レベルの監督とビューレベルのアノテーションなしで、SegmentMILは、狭窄の存在を共同で予測し、損傷した解剖学的領域を局所化し、右冠動脈と左冠動脈のそれぞれのセグメントを区別する。
SegmentMILは、内部および外部評価において高い性能を示し、ビューレベルモデルと古典的MILベースラインの両方を上回り、冠動脈狭窄診断のための臨床的に実行可能なスケーラブルなソリューションとしての可能性を示している。
私たちのコードはhttps://github.com/NikolaCenic/mil-stenosis.comで公開されています。
関連論文リスト
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
病理画像分類に適したコントラスト学習に基づくマルチスケール機能融合モデルであるCMSwinKANを提案する。
マルチスケールの特徴を融合させ、対照的な学習戦略を活用することで、CMSwinKANは臨床医の包括的なアプローチを模倣する。
その結果、CMSwinKANは、既存の最先端の病理モデルよりも、大規模なデータセットで事前訓練されたモデルよりもパフォーマンスがよいことが示された。
論文 参考訳(メタデータ) (2025-04-18T15:39:46Z) - Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning [3.656984996633334]
そこで本研究では,MICCAI 2023 Automatic Region-based Coronary Artery Disease(冠状動脈疾患自動診断)のためのエンド・ツー・エンドの機械学習ソリューションを提案する。
X線冠動脈造影による冠動脈分画および狭窄性病変の局在性評価の方法の標準化を目的としている。
冠状動脈セグメンテーションでは平均F1スコアが37.69%、狭窄局所化では39.41%であった。
論文 参考訳(メタデータ) (2023-10-27T08:03:12Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
マンモグラム質量検出のための解剖学的グラフ畳み込みネットワーク(AGN)を提案する。
AGNはマンモグラムの質量検出用に調整されており、既存の検出手法を多視点推論能力で実現している。
2つの標準ベンチマークの実験によると、AGNは最先端のパフォーマンスを大幅に上回っている。
論文 参考訳(メタデータ) (2021-05-21T06:48:34Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
血管内超音波と光コヒーレンス断層撮影は冠状動脈を特徴付けるために広く利用可能である。
畳み込みニューラルネットワークモデルを提案し,その性能を多項損失関数を用いて最適化する。
モデルは2つの主要なアーティファクトのクラスをセグメンテーションし,血管壁領域内の解剖学的層を検出する。
論文 参考訳(メタデータ) (2021-05-11T15:52:31Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。