論文の概要: Unified Inference Framework for Single and Multi-Player Performative Prediction: Method and Asymptotic Optimality
- arxiv url: http://arxiv.org/abs/2602.03049v1
- Date: Tue, 03 Feb 2026 03:17:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 18:37:15.217921
- Title: Unified Inference Framework for Single and Multi-Player Performative Prediction: Method and Asymptotic Optimality
- Title(参考訳): シングルプレイヤーとマルチプレイヤーの演奏予測のための統一推論フレームワーク:方法と漸近的最適性
- Authors: Zhixian Zhang, Xiaotian Hou, Linjun Zhang,
- Abstract要約: 本稿では,単一エージェントと複数エージェントのパフォーマンスを橋渡しする,統一的な統計的推論フレームワークを提案する。
動的でパフォーマンスの高い環境で、信頼性の高い見積もりと意思決定のための原則化されたツールキットを提供する。
- 参考スコア(独自算出の注目度): 15.289993502701305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performative prediction characterizes environments where predictive models alter the very data distributions they aim to forecast, triggering complex feedback loops. While prior research treats single-agent and multi-agent performativity as distinct phenomena, this paper introduces a unified statistical inference framework that bridges these contexts, treating the former as a special case of the latter. Our contribution is two-fold. First, we put forward the Repeated Risk Minimization (RRM) procedure for estimating the performative stability, and establish a rigorous inferential theory for admitting its asymptotic normality and confirming its asymptotic efficiency. Second, for the performative optimality, we introduce a novel two-step plug-in estimator that integrates the idea of Recalibrated Prediction Powered Inference (RePPI) with Importance Sampling, and further provide formal derivations for the Central Limit Theorems of both the underlying distributional parameters and the plug-in results. The theoretical analysis demonstrates that our estimator achieves the semiparametric efficiency bound and maintains robustness under mild distributional misspecification. This work provides a principled toolkit for reliable estimation and decision-making in dynamic, performative environments.
- Abstract(参考訳): パフォーマンス予測は、予測モデルが予測対象とするデータ分布を変更する環境を特徴付け、複雑なフィードバックループをトリガーする。
先行研究では, 単一エージェントと複数エージェントの動作を別個の現象として扱うが, 本論文ではこれらの文脈をブリッジする統一統計的推論フレームワークを導入し, 前者は後者の特殊な場合として扱う。
私たちの貢献は2倍です。
まず, 繰り返しリスク最小化法(RRM)を提唱し, その漸近的正規性を認め, その漸近的効率を確認するための厳密な推論理論を確立した。
第二に,2段階のプラグイン推定器を導入し,Recalibrated Prediction Powered Inference(RePPI)とImportance Smplingを統合し,基礎となる分布パラメータとプラグイン結果の両方の中央極限定理の形式的導出を行う。
この理論解析により, この推定器は半パラメトリック効率バウンドを達成し, 軽度分布不特定条件下で頑健性を維持することを示した。
この研究は、動的でパフォーマンスの高い環境での信頼性の高い見積もりと意思決定のための原則化されたツールキットを提供する。
関連論文リスト
- Improving Minimax Estimation Rates for Contaminated Mixture of Multinomial Logistic Experts via Expert Heterogeneity [49.809923981964715]
凍結したエキスパートとして機能する事前訓練されたモデルを、新しいタスクを学ぶためにトレーニング可能なエキスパートとして機能するアダプタモデルに統合するトランスファー学習手法によって、汚染された専門家の混合(MoE)が動機付けられる。
本研究は, 地絡パラメータがサンプルサイズによって異なる困難な条件下で, パラメータを推定するための一様収束率を特徴付ける。
また、対応するミニマックス下限を定め、これらのレートがミニマックス最適であることを保証する。
論文 参考訳(メタデータ) (2026-01-31T23:45:50Z) - Efficient Thought Space Exploration through Strategic Intervention [54.35208611253168]
本稿では,この知見を2つの相乗的コンポーネントを通して操作するHint-Practice Reasoning(HPR)フレームワークを提案する。
フレームワークの中核となる革新は、動的に介入点を識別する分散不整合低減(DIR)である。
算術的および常識的推論ベンチマークによる実験は、HPRの最先端の効率-精度トレードオフを実証している。
論文 参考訳(メタデータ) (2025-11-13T07:26:01Z) - Doubly-Robust Estimation of Counterfactual Policy Mean Embeddings [23.3862001690226]
反ファクトポリシーの下での成果の分配を推定することは、推薦、広告、医療といった領域における意思決定にとって重要である。
再生カーネル空間(RKHS)における反事実分布全体を表す新しいフレームワーク-Counterfactual Policy Mean Embedding(CPME)を提案する。
プラグイン推定器と2倍頑健な推定器の両方を導入し、後者は結果埋め込みモデルと確率モデルの両方においてバイアスを補正することで収束率の向上を享受する。
論文 参考訳(メタデータ) (2025-06-03T12:16:46Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Doubly Robust Inference in Causal Latent Factor Models [12.116813197164047]
本稿では、多数の単位と結果を含む現代データ豊富な環境において、観測不能なコンファウンディングの下での平均処理効果を推定する新しい手法を提案する。
有限サンプル重み付けと保証を導出し、新しい推定器の誤差がパラメトリック速度で平均ゼロガウス分布に収束することを示す。
論文 参考訳(メタデータ) (2024-02-18T17:13:46Z) - Causality-oriented robustness: exploiting general noise interventions [4.64479351797195]
本稿では因果性指向のロバスト性に着目し,不変勾配(DRIG)を用いた分布ロバスト性を提案する。
DRIGはトレーニングデータにおける一般的なノイズ介入を利用して、目に見えない介入に対する堅牢な予測を行う。
我々のフレームワークには特別なケースとしてアンカー回帰が含まれており、より多様な摂動から保護される予測モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-07-18T16:22:50Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
本稿では、因果的観点からの包括的ミニマックス分析について述べる。
最小の最悪のリスクを持つサブセットを探索する効率的なアルゴリズムを提案する。
本手法の有効性と有効性は, 合成データとアルツハイマー病の診断で実証された。
論文 参考訳(メタデータ) (2021-07-05T09:07:29Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。