論文の概要: Doubly Robust Inference in Causal Latent Factor Models
- arxiv url: http://arxiv.org/abs/2402.11652v3
- Date: Tue, 29 Oct 2024 15:26:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:37:39.657062
- Title: Doubly Robust Inference in Causal Latent Factor Models
- Title(参考訳): 因果潜在因子モデルにおける二重ロバスト推論
- Authors: Alberto Abadie, Anish Agarwal, Raaz Dwivedi, Abhin Shah,
- Abstract要約: 本稿では、多数の単位と結果を含む現代データ豊富な環境において、観測不能なコンファウンディングの下での平均処理効果を推定する新しい手法を提案する。
有限サンプル重み付けと保証を導出し、新しい推定器の誤差がパラメトリック速度で平均ゼロガウス分布に収束することを示す。
- 参考スコア(独自算出の注目度): 12.116813197164047
- License:
- Abstract: This article introduces a new estimator of average treatment effects under unobserved confounding in modern data-rich environments featuring large numbers of units and outcomes. The proposed estimator is doubly robust, combining outcome imputation, inverse probability weighting, and a novel cross-fitting procedure for matrix completion. We derive finite-sample and asymptotic guarantees, and show that the error of the new estimator converges to a mean-zero Gaussian distribution at a parametric rate. Simulation results demonstrate the relevance of the formal properties of the estimators analyzed in this article.
- Abstract(参考訳): 本稿では、多数の単位と結果を含む現代データ豊富な環境において、観測不能なコンファウンディングの下での平均処理効果を推定する新しい手法を提案する。
提案した推定器は2重に頑健であり,結果計算,逆確率重み付け,行列補完のための新しいクロスフィット手法を組み合わせた。
有限サンプルと漸近保証を導出し、新しい推定器の誤差がパラメトリック速度で平均ゼロガウス分布に収束することを示す。
シミュレーション結果は,本論文で解析した推定器の形式的特性の関連性を示す。
関連論文リスト
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
雑音線形測定から未知パラメータを推定するための分布的ロバストな推定フレームワークを提案する。
このような推定器の2乗誤差性能を解析する作業に着目する。
凸凹最適化問題の解法として2乗誤差を復元できることを示す。
論文 参考訳(メタデータ) (2022-06-27T13:02:59Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
多様性フロンティアは生成モデルの評価フレームワークとして提案されている。
分岐フロンティアのプラグイン推定器のサンプル複雑性の非漸近的境界を確立する。
また,スムーズな分布推定器の統計的性能を調べることにより,分散フロンティアの枠組みも強化する。
論文 参考訳(メタデータ) (2021-06-15T06:26:25Z) - A Nonconvex Framework for Structured Dynamic Covariance Recovery [24.471814126358556]
時間変化のある2次統計量を持つ高次元データに対するフレキシブルで解釈可能なモデルを提案する。
文献によって動機付けられ,因子化とスムーズな時間データの定量化を行う。
私たちのアプローチは,既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-11-11T07:09:44Z) - Distributionally Robust Parametric Maximum Likelihood Estimation [13.09499764232737]
パラメトリックな名目分布に対して,最悪の場合のログロスを均一に最小化する,分布的に頑健な最大確率推定器を提案する。
我々の新しい頑健な推定器は、統計的整合性も享受し、回帰と分類の両方に有望な実験結果を提供する。
論文 参考訳(メタデータ) (2020-10-11T19:05:49Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。