論文の概要: Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
- arxiv url: http://arxiv.org/abs/2602.03767v1
- Date: Tue, 03 Feb 2026 17:27:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 18:37:15.603783
- Title: Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
- Title(参考訳): AI天気予報アクセスを変換するための決定指向ベンチマーク:インドモンスーンへの応用
- Authors: Rajat Masiwal, Colin Aitken, Adam Marchakitus, Mayank Gupta, Katherine Kowal, Hamid A. Pahlavan, Tyler Yang, Y. Qiang Sun, Michael Kremer, Amir Jina, William R. Boos, Pedram Hassanzadeh,
- Abstract要約: 気象学、AI、社会科学を結びつける枠組みを導入する。
インドのモンスーン予測の150年前の問題に適用する。
このフレームワークは、2025年に政府主導で、農家のAIベースのモンスーンの発症予測を3800万回送った。
- 参考スコア(独自算出の注目度): 0.1336067931174899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
- Abstract(参考訳): 人工知能天気予報(AIWP)モデルは、従来型の物理モデルよりも高い計算資源や時間を要する。
したがって、オープンアクセスのAIWPモデルは、低所得者や中所得者を支援するためのトランスフォーメーションツールとして約束される。
しかし、AIWPモデルを評価する現在のアプローチは、意思決定指向の運用フレームワークにおけるローカル利害関係者のニーズを考慮せずに、主に集約された気象指標に焦点を当てている。
本稿では,気象学,AI,社会科学を結びつける枠組みを紹介する。
例として,150年前のインドモンスーンの予測問題に適用し,気候変動の影響を受けやすい雨水農業の利益に着目した。
AIWPモデルは、決定論的および確率論的指標を使用して、アウト・オブ・サンプルを評価する際に、数週間前の地域規模で農業関連性のある発症指数を巧みに予測する。
この枠組みは2025年に政府主導で、インド農業のAIベースのモンスーンの発症予測を3800万回送った。
この意思決定指向のベンチマークフレームワークは、AIWPモデルのパワーを活用するための青写真の重要なコンポーネントを提供する。
関連論文リスト
- MAUSAM: An Observations-focused assessment of Global AI Weather Prediction Models During the South Asian Monsoon [2.3326724664179985]
南アジアモンスーンにおけるAI不確実性の測定(MAUSAM:Measuring AI Uncertainty in South Asian Monsoon)について,7つのAIベースの予測システムの評価を行った。
AIモデルは、幅広い変数にわたるモンスーン中の印象的な予測スキルを示しています。
モデルは、極度の降水量の過小予測のような、より微細なスケールで体系的なエラーを示す。
論文 参考訳(メタデータ) (2025-09-02T01:51:40Z) - OneForecast: A Universal Framework for Global and Regional Weather Forecasting [67.61381313555091]
本稿では,グラフニューラルネットワークに基づくグローバルなネスト型気象予報フレームワーク(OneForecast)を提案する。
動的システムパースペクティブとマルチグリッド理論を組み合わせることで,マルチスケールグラフ構造を構築し,対象領域を密度化する。
動的ゲーティングユニットを用いた適応型メッセージング機構を導入し,ノードとエッジ機能を深く統合し,より正確なイベント予測を行う。
論文 参考訳(メタデータ) (2025-02-01T06:49:16Z) - OMG-HD: A High-Resolution AI Weather Model for End-to-End Forecasts from Observations [11.729902584481767]
OMG-HDは、観測データソースから直接予測を行うように設計されたAIベースの高解像度天気予報モデルである。
RMSEは温度2mで最大13%,風速10mで17%,比湿度2mで48%,表面圧力で32%向上した。
論文 参考訳(メタデータ) (2024-12-24T07:46:50Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。