論文の概要: OMG-HD: A High-Resolution AI Weather Model for End-to-End Forecasts from Observations
- arxiv url: http://arxiv.org/abs/2412.18239v1
- Date: Tue, 24 Dec 2024 07:46:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:53:53.015100
- Title: OMG-HD: A High-Resolution AI Weather Model for End-to-End Forecasts from Observations
- Title(参考訳): OMG-HD:観測結果のエンドツーエンド予測のための高分解能AI気象モデル
- Authors: Pengcheng Zhao, Jiang Bian, Zekun Ni, Weixin Jin, Jonathan Weyn, Zuliang Fang, Siqi Xiang, Haiyu Dong, Bin Zhang, Hongyu Sun, Kit Thambiratnam, Qi Zhang,
- Abstract要約: OMG-HDは、観測データソースから直接予測を行うように設計されたAIベースの高解像度天気予報モデルである。
RMSEは温度2mで最大13%,風速10mで17%,比湿度2mで48%,表面圧力で32%向上した。
- 参考スコア(独自算出の注目度): 11.729902584481767
- License:
- Abstract: In recent years, Artificial Intelligence Weather Prediction (AIWP) models have achieved performance comparable to, or even surpassing, traditional Numerical Weather Prediction (NWP) models by leveraging reanalysis data. However, a less-explored approach involves training AIWP models directly on observational data, enhancing computational efficiency and improving forecast accuracy by reducing the uncertainties introduced through data assimilation processes. In this study, we propose OMG-HD, a novel AI-based regional high-resolution weather forecasting model designed to make predictions directly from observational data sources, including surface stations, radar, and satellite, thereby removing the need for operational data assimilation. Our evaluation shows that OMG-HD outperforms both the European Centre for Medium-Range Weather Forecasts (ECMWF)'s high-resolution operational forecasting system, IFS-HRES, and the High-Resolution Rapid Refresh (HRRR) model at lead times of up to 12 hours across the contiguous United States (CONUS) region. We achieve up to a 13% improvement on RMSE for 2-meter temperature, 17% on 10-meter wind speed, 48% on 2-meter specific humidity, and 32% on surface pressure compared to HRRR. Our method shows that it is possible to use AI-driven approaches for rapid weather predictions without relying on NWP-derived weather fields as model input. This is a promising step towards using observational data directly to make operational forecasts with AIWP models.
- Abstract(参考訳): 近年、人工知能天気予報(AIWP)モデルは、分析データを活用することで、従来の数値気象予報(NWP)モデルに匹敵する、あるいは超えた性能を達成している。
しかし、あまり探索されていないアプローチでは、観測データを直接AIWPモデルを訓練し、計算効率を向上し、データ同化プロセスによって導入された不確実性を減らすことにより予測精度を向上させる。
本研究では, 地上局, レーダー, 衛星などの観測データソースから直接予測を行うことにより, 運用データ同化の必要性を解消する, 新たなAIに基づく高分解能気象予報モデルOMG-HDを提案する。
OMG-HDは欧州中距離気象予報センター (ECMWF) の高分解能運転予測システム IFS-HRES と高分解能高速リフレッシュ (HRRR) モデルの両方で, 連続した米国(CONUS) 地域で最大12時間, 高い性能を示した。
温度2mでRMSEが13%,風速10mで17%,比湿度2mで48%,HRRRで32%向上した。
提案手法は,NWP由来の気象場をモデル入力に頼らずに,AIによる迅速な天気予報に活用可能であることを示す。
これは、AIWPモデルで運用予測を行うために、観測データを直接使用するための有望なステップである。
関連論文リスト
- Evaluation of Tropical Cyclone Track and Intensity Forecasts from Artificial Intelligence Weather Prediction (AIWP) Models [0.6282171844772422]
4つのオープンソースAIWPモデルが検討されている(FourCastNetv1、FourCastNetv2-small、GraphCast-operational、Pangu-Weather)。
NHCモデルコンセンサスに対するAIWPモデルの貢献も評価した。
かなりの負の強度バイアスにもかかわらず、AIWPモデルは強度のコンセンサスに中立的な影響を与える。
論文 参考訳(メタデータ) (2024-09-08T22:58:46Z) - Regional data-driven weather modeling with a global stretched-grid [0.3804109677654105]
このモデルはグラフニューラルネットワークに基づいており、これは自然に任意のマルチレゾリューショングリッド構成を提供する。
このモデルは北欧の短距離気象予測に適用され、2.5km、時間分解能は6hと予測される。
このモデルは、競争力のある降水量や風速予測も生み出すが、極端な出来事を過小評価している。
論文 参考訳(メタデータ) (2024-09-04T17:31:20Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - EWMoE: An effective model for global weather forecasting with mixture-of-experts [6.695845790670147]
本研究では,地球規模の天気予報に有効なモデルであるEWMoEを提案する。
本モデルは,3次元絶対位置埋め込み,Mixture-of-Experts層,および2つの特定の損失関数の3つの重要な要素を組み込んで予測精度を向上させる。
論文 参考訳(メタデータ) (2024-05-09T16:42:13Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。