論文の概要: All-Atom GPCR-Ligand Simulation via Residual Isometric Latent Flow
- arxiv url: http://arxiv.org/abs/2602.03902v1
- Date: Tue, 03 Feb 2026 10:10:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.215447
- Title: All-Atom GPCR-Ligand Simulation via Residual Isometric Latent Flow
- Title(参考訳): 残留等尺性潜水流による全原子GPCR-Ligandシミュレーション
- Authors: Jiying Zhang, Shuhao Zhang, Pierre Vandergheynst, Patrick Barth,
- Abstract要約: Gタンパク質結合受容体(GPCR)は、シグナルを伝達するために複雑なコンフォメーション転移に依存する。
従来の全原子分子動力学シミュレーションは計算が禁止されている。
我々は,全原子量GPCRリガンドシミュレーションのための深層生成フレームワークであるGPCRLMDを紹介する。
- 参考スコア(独自算出の注目度): 6.28055029844305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: G-protein-coupled receptors (GPCRs), primary targets for over one-third of approved therapeutics, rely on intricate conformational transitions to transduce signals. While Molecular Dynamics (MD) is essential for elucidating this transduction process, particularly within ligand-bound complexes, conventional all-atom MD simulation is computationally prohibitive. In this paper, we introduce GPCRLMD, a deep generative framework for efficient all-atom GPCR-ligand simulation.GPCRLMD employs a Harmonic-Prior Variational Autoencoder (HP-VAE) to first map the complex into a regularized isometric latent space, preserving geometric topology via physics-informed constraints. Within this latent space, a Residual Latent Flow samples evolution trajectories, which are subsequently decoded back to atomic coordinates. By capturing temporal dynamics via relative displacements anchored to the initial structure, this residual mechanism effectively decouples static topology from dynamic fluctuations. Experimental results demonstrate that GPCRLMD achieves state-of-the-art performance in GPCR-ligand dynamics simulation, faithfully reproducing thermodynamic observables and critical ligand-receptor interactions.
- Abstract(参考訳): 承認された治療の3分の1以上のターゲットであるGタンパク質結合受容体(GPCR)は、シグナルを伝達するために複雑なコンフォメーション転移に依存する。
分子動力学(MD)はこの伝達過程、特に配位子結合複合体の解明に不可欠であるが、従来の全原子MDシミュレーションは計算的に禁止されている。
本稿では,全原子量GPCR-リガンドシミュレーションを効率的に生成するフレームワークであるGPCRLMDについて紹介する。GPCRLMDでは,Halmonic-Prior Variational Autoencoder (HP-VAE) を用いて,複合体を正規化された等方性ラテント空間に最初にマッピングし,物理インフォームド制約による幾何学的トポロジを保存する。
この潜水空間内では、残留潜水流が進化軌道をサンプリングし、その後原子座標に復号する。
初期構造に固定された相対変位によって時間的ダイナミクスを捕捉することにより、この残留メカニズムは静的トポロジーを動的ゆらぎから効果的に分離する。
実験により, GPCRLMDはGPCR-リガンド力学シミュレーションの最先端性能, 熱力学的可観測物質を忠実に再現し, 臨界リガンド-受容体相互作用を達成できることが確認された。
関連論文リスト
- PHASE-Net: Physics-Grounded Harmonic Attention System for Efficient Remote Photoplethysmography Measurement [63.007237197267834]
既存のディープラーニング手法は、主に生理学的モニタリングであり、理論的な堅牢性を欠いている。
本研究では,Navier-Stokes方程式のヘモダイナミックスから導かれる物理インフォームド r パラダイムを提案し,パルス信号が2次系に従うことを示す。
これは、時間的円錐ネットワーク(TCN)を使用する理論的正当性を提供する。
Phase-Netは高い効率で最先端のパフォーマンスを実現し、理論上は基礎的でデプロイ可能な r ソリューションを提供する。
論文 参考訳(メタデータ) (2025-09-29T14:36:45Z) - Beyond Ensembles: Simulating All-Atom Protein Dynamics in a Learned Latent Space [4.5211402678313135]
LD-FPGの学習潜在空間内でのダイナミクスをシミュレーションするモジュールコンポーネントであるGraph Latent Dynamics Propagator (GLDP)を紹介する。
我々は,スコア誘導ランゲヴィン力学,(ii)クープマンに基づく線形作用素,(iii)自己回帰ニューラルネットワークの3種類のプロパゲータを比較した。
統合エンコーダ・プロパゲータ・デコーダ・フレームワーク内では、長い水平安定性、バックボーンとサイドチェーンのアンサンブルの忠実さ、機能的自由エネルギーの景観を評価する。
論文 参考訳(メタデータ) (2025-09-02T11:09:06Z) - CryoSplat: Gaussian Splatting for Cryo-EM Homogeneous Reconstruction [48.45613121595709]
低温電子顕微鏡(cryo-EM)は、分子構造をほぼ原子の分解能で決定するのに役立つ。
単一粒子Cryo-EMにおける中心的な計算課題は、未知の方向で取得されたノイズの多い2Dプロジェクションから分子の3次元静電ポテンシャルを再構築することである。
本稿では,GMMをベースとしたCryoSplatを提案し,Gaussian splattingとCryo-EM画像形成の物理を統合する。
論文 参考訳(メタデータ) (2025-08-06T23:24:43Z) - Aligned Manifold Property and Topology Point Clouds for Learning Molecular Properties [55.2480439325792]
この研究は、局所量子由来のスカラー場とカスタムトポロジカルディスクリプタを組み合わせた分子表面表現であるAMPTCRを導入する。
分子量については、AMPTCRが物理的に意味のあるデータをコードし、検証R2は0.87であることを確認した。
細菌抑制タスクでは、AMPTCRは大腸菌阻害値の分類と直接回帰の両方を可能にする。
論文 参考訳(メタデータ) (2025-07-22T04:35:50Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Deep Signature: Characterization of Large-Scale Molecular Dynamics [29.67824486345836]
ディープシグナチャ(Deep Signature)は、複雑な力学と原子間相互作用を特徴付ける、計算的に抽出可能な新しいフレームワークである。
提案手法では,協調力学を局所的に集約してシステムのサイズを小さくするソフトスペクトルクラスタリングと,非滑らかな対話力学のグローバルな評価を行うシグネチャ変換を取り入れた。
論文 参考訳(メタデータ) (2024-10-03T16:37:48Z) - A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics [0.0]
本稿では,多角形分解(POD)と熱力学に基づくニューラルネットワーク(TANN)を組み合わせることで,複雑な非弾性系のマクロ的挙動を捉える手法を提案する。
以上の結果から,POD-TANN手法は実験結果の精度を再現するだけでなく,計算コストを低減し,不均一な非弾性地盤力学系のマルチスケールモデリングの実用的なツールとなることが示唆された。
論文 参考訳(メタデータ) (2024-08-13T19:08:56Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
分子配座のログ密度の勾配を推定する新しいモデルScoreMDを提案する。
複数のアーキテクチャの改善により、MD17とC7O2H10の異性体において最先端のベースラインよりも優れています。
この研究は、新しい物質の加速と薬物発見に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2022-04-19T05:13:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。