論文の概要: CoLT: Reasoning with Chain of Latent Tool Calls
- arxiv url: http://arxiv.org/abs/2602.04246v1
- Date: Wed, 04 Feb 2026 06:12:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.397365
- Title: CoLT: Reasoning with Chain of Latent Tool Calls
- Title(参考訳): CoLT: 遅延ツールコールのチェーンと推論
- Authors: Fangwei Zhu, Zhifang Sui,
- Abstract要約: CoT(Chain-of-Thought)は、大規模言語モデル(LLM)の推論能力を高める重要な手法である。
ツールコールとして潜伏推論を実装する新しいフレームワークである「CoLT」を提案する。
- 参考スコア(独自算出の注目度): 31.228763375347608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) is a critical technique in enhancing the reasoning ability of Large Language Models (LLMs), and latent reasoning methods have been proposed to accelerate the inefficient token-level reasoning chain. We notice that existing latent reasoning methods generally require model structure augmentation and exhaustive training, limiting their broader applicability. In this paper, we propose CoLT, a novel framework that implements latent reasoning as ``tool calls''. Instead of reasoning entirely in the latent space, CoLT generates seed tokens that contain information of a reasoning step. When a latent tool call is triggered, a smaller external model will take the hidden states of seed tokens as its input, and unpack the seed tokens back to a full reasoning step. In this way, we can ensure that the main model reasons in the explicit token space, preserving its ability while improving efficiency. Experimental results on four mathematical datasets demonstrate that CoLT achieves higher accuracy and shorter reasoning length than baseline latent models, and is compatible with reinforcement learning algorithms and different decoder structures.
- Abstract(参考訳): CoT (Chain-of-Thought) はLarge Language Models (LLMs) の推論能力を高める重要な手法であり、非効率なトークンレベルの推論チェーンを加速する潜在的推論手法が提案されている。
既存の潜在推論手法は一般にモデル構造の拡張と徹底的なトレーニングを必要としており、適用性は制限されていることに気付きます。
本稿では, 'tool call'' として遅延推論を実装した新しいフレームワークである CoLT を提案する。
潜在空間を完全に推論する代わりに、CoLTは推論ステップの情報を含むシードトークンを生成する。
潜在ツールコールが起動されると、小さな外部モデルはシードトークンの隠された状態を入力として取り出し、シードトークンを完全な推論ステップに戻します。
このようにして、明示的なトークン空間における主要なモデル理由を確実にし、効率を向上しながらその能力を保ちます。
4つの数学的データセットの実験結果から、CoLTはベースライン潜在モデルよりも精度が高く、推論長も短く、強化学習アルゴリズムや異なるデコーダ構造と互換性があることが示された。
関連論文リスト
- Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization [9.193078163792427]
CoT(Chain-of-Thought)は、大規模言語モデル(LLM)に複雑な問題に取り組む権限を与える。
最近の潜伏推論手法は、連続した隠蔽状態内で推論を行うことによって効率を最適化しようとする。
PLaTは、潜在推論を言語化から根本的に切り離すことによって計画として再構成するフレームワークである。
論文 参考訳(メタデータ) (2026-01-29T07:38:18Z) - Fast Thinking for Large Language Models [67.7238685892317]
我々は、訓練中にのみ簡潔なCoTスケッチを使用して個別戦略事前のコードブックを学習するフレームワークであるLatent Codebooks for Fast Thinkingを紹介した。
推論では、コードブックから抽出した少数の連続的思考スイッチのモデル条件を1パスにすることで、明確な推論トークンを生成することなく、戦略レベルのガイダンスを可能にする。
論文 参考訳(メタデータ) (2025-09-28T04:19:48Z) - A Survey on Latent Reasoning [100.54120559169735]
大きな言語モデル(LLM)は印象的な推論機能を示している。
中間ステップを言語化するCoT推論は、モデルの表現帯域幅を制限する。
潜在的推論は、モデルの連続的な隠れ状態に完全にマルチステップの推論を実行することで、このボトルネックに対処する。
論文 参考訳(メタデータ) (2025-07-08T17:29:07Z) - Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer [0.8738725605667471]
CoT(Chain-of- Thought)推論は、トランスフォーマーベースの言語モデルで複雑な数学や多段階計画に優れる。
標準的なデコーダのみのアーキテクチャでは、これらの推論ステップは自然言語で外部化され、効率を犠牲にして解釈性を向上させる。
パラメータ数の増加を伴わずに推論時に層を再利用する深度再帰変換器である Huginn-3.5B にそのような推論構造が出現するかどうかを検討する。
論文 参考訳(メタデータ) (2025-07-02T23:35:21Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [74.37307916314407]
提案するフレームワークはConciseHintと呼ばれ,推論モデルが簡潔に話すことを継続的に奨励する。
DeepSeek-R1 および Qwen-3 シリーズを含む最先端の LRM 実験により,本手法が簡潔な推論を効果的に生成できることが実証された。
論文 参考訳(メタデータ) (2025-06-23T16:20:44Z) - Efficient Inference for Large Reasoning Models: A Survey [74.17203483365171]
LRM(Large Reasoning Models)は、Large Language Models(LLM)の推論能力を大幅に向上させる。
しかし、それらの熟考的推論プロセスはトークンの使用、メモリ消費、推論時間に非効率をもたらす。
本調査では, LRMに特化して設計された効率的な推論手法を概説し, 推論品質を維持しつつトークンの非効率を緩和することに着目した。
論文 参考訳(メタデータ) (2025-03-29T13:27:46Z) - Efficient Reasoning with Hidden Thinking [48.96945580741641]
CoT(Chain-of-Thought)推論は、複雑な問題解決能力を改善するための強力なフレームワークになっています。
我々は,隠された潜在空間におけるCoTの推論を利用した効率的な推論フレームワークであるtextbfHeima$(隠されたラマとして)を提案する。
ハイマモデルは、ゼロショットタスクの精度を維持しつつ、より高い生成効率を達成する。
論文 参考訳(メタデータ) (2025-01-31T15:10:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。