論文の概要: SIDeR: Semantic Identity Decoupling for Unrestricted Face Privacy
- arxiv url: http://arxiv.org/abs/2602.04994v1
- Date: Wed, 04 Feb 2026 19:30:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 18:49:08.590306
- Title: SIDeR: Semantic Identity Decoupling for Unrestricted Face Privacy
- Title(参考訳): SIDeR: 無制限の顔プライバシーのためのセマンティックアイデンティティ分離
- Authors: Zhuosen Bao, Xia Du, Zheng Lin, Jizhe Zhou, Zihan Fang, Jiening Wu, Yuxin Zhang, Zhe Chen, Chi-man Pun, Wei Ni, Jun Luo,
- Abstract要約: 本稿では,非制限顔プライバシー保護のためのセマンティックデカップリング駆動フレームワークSIDeRを提案する。
SIDeRは、顔画像をマシン認識可能な識別特徴ベクトルと視覚的に知覚可能なセマンティックな外観成分に分解する。
認証されたアクセスのために、SIDeRは正しいパスワードが提供されるときに元の形式に復元できる。
- 参考スコア(独自算出の注目度): 53.75084833636302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the deep integration of facial recognition into online banking, identity verification, and other networked services, achieving effective decoupling of identity information from visual representations during image storage and transmission has become a critical challenge for privacy protection. To address this issue, we propose SIDeR, a Semantic decoupling-driven framework for unrestricted face privacy protection. SIDeR decomposes a facial image into a machine-recognizable identity feature vector and a visually perceptible semantic appearance component. By leveraging semantic-guided recomposition in the latent space of a diffusion model, it generates visually anonymous adversarial faces while maintaining machine-level identity consistency. The framework incorporates momentum-driven unrestricted perturbation optimization and a semantic-visual balancing factor to synthesize multiple visually diverse, highly natural adversarial samples. Furthermore, for authorized access, the protected image can be restored to its original form when the correct password is provided. Extensive experiments on the CelebA-HQ and FFHQ datasets demonstrate that SIDeR achieves a 99% attack success rate in black-box scenarios and outperforms baseline methods by 41.28% in PSNR-based restoration quality.
- Abstract(参考訳): オンラインバンキング、アイデンティティ検証、その他のネットワークサービスへの顔認識の深い統合により、画像ストレージと送信の間の視覚的表現からアイデンティティ情報の効果的な分離を実現することは、プライバシー保護にとって重要な課題となっている。
この問題に対処するため,セマンティック・デカップリング駆動型顔プライバシー保護フレームワークSIDeRを提案する。
SIDeRは、顔画像をマシン認識可能な識別特徴ベクトルと視覚的に知覚可能なセマンティックな外観成分に分解する。
拡散モデルの潜在空間における意味誘導的再分解を利用して、マシンレベルのアイデンティティ一貫性を維持しながら、視覚的に無名な対向顔を生成する。
このフレームワークは運動量駆動の非制限摂動最適化と意味的・視覚的バランス係数を組み込んで、複数の視覚的に多様性があり、非常に自然な対向的なサンプルを合成する。
さらに、認証アクセスには、正しいパスワードが提供される際に保護された画像を元の形式に復元することができる。
CelebA-HQとFFHQデータセットの大規模な実験により、SIDeRはブラックボックスシナリオで99%の攻撃成功率を達成し、PSNRベースの復元品質でベースラインメソッドを41.28%上回る結果となった。
関連論文リスト
- Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection [14.797807196805607]
顔認識は、ソーシャルネットワーク上での不正な監視とユーザー追跡によって、深刻なプライバシー上の懸念を引き起こしている。
既存のプライバシーを強化する方法は、顔のプライバシーを保護する自然な顔画像を生成するのに失敗する。
そこで我々はDiffAIMを提案し、悪意のあるFRシステムに対して自然かつ高度に伝達可能な対向顔を生成する。
論文 参考訳(メタデータ) (2025-04-30T13:49:59Z) - iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
顔の匿名化は、個人のプライバシーを保護するために顔の視覚的アイデンティティを隠すことを目的としている。
Invertible Face Anonymization の頭字語 iFADIT を Disentangled Identity Transform を用いて提案する。
論文 参考訳(メタデータ) (2025-01-08T10:08:09Z) - ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
深層学習に基づく顔操作の誤用は、公民権に重大な脅威をもたらす。
この不正行為を防止するため、操作過程を妨害する積極的な防御法が提案されている。
本稿では,IDガード(ID-Guard)と呼ばれる顔の操作に対処するための普遍的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T09:30:08Z) - Disentangle Before Anonymize: A Two-stage Framework for Attribute-preserved and Occlusion-robust De-identification [55.741525129613535]
匿名化前の混乱」は、新しい二段階フレームワーク(DBAF)である
このフレームワークには、Contrastive Identity Disentanglement (CID)モジュールとKey-authorized Reversible Identity Anonymization (KRIA)モジュールが含まれている。
大規模な実験により,本手法は最先端の非識別手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-11-15T08:59:02Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
顔の非識別、別名顔の匿名化は、実際のアイデンティティが隠されている間、同様の外観と同じ背景を持つ別の画像を生成することを指します。
我々は,データ駆動型ディープニューラルネットワークと差分プライバシー機構を組み合わせた顔匿名化フレームワークであるIdentityDPを提案する。
我々のモデルは、顔の識別関連情報を効果的に難読化し、視覚的類似性を保ち、高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2021-03-02T14:26:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。