論文の概要: A Unified Framework for Rethinking Policy Divergence Measures in GRPO
- arxiv url: http://arxiv.org/abs/2602.05494v1
- Date: Thu, 05 Feb 2026 09:56:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 18:49:08.871626
- Title: A Unified Framework for Rethinking Policy Divergence Measures in GRPO
- Title(参考訳): GRPOにおける政策多様化対策の統一的枠組み
- Authors: Qingyuan Wu, Yuhui Wang, Simon Sinong Zhan, Yanning Dai, Shilong Deng, Sarra Habchi, Qi Zhu, Matthias Gallé, Chao Huang,
- Abstract要約: RLVR(Reinforcement Learning with Verified Reward)は、Large Language Models(LLM)の推論能力向上のための重要なパラダイムとして登場した。
GRPOなどの既存のRLVR法の多くは、クリッピング率比を通じてポリシーのばらつきを制限することで安定した更新を保証する。
本稿では,政策分散という一般的な概念を通じて既存の手法を特徴付ける統一型クリッピングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 17.413231671222004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning with Verified Reward (RLVR) has emerged as a critical paradigm for advancing the reasoning capabilities of Large Language Models (LLMs). Most existing RLVR methods, such as GRPO and its variants, ensure stable updates by constraining policy divergence through clipping likelihood ratios. This paper introduces a unified clipping framework that characterizes existing methods via a general notion of policy divergence, encompassing both likelihood ratios and Kullback-Leibler (KL) divergences and extending to alternative measures. The framework provides a principled foundation for systematically analyzing how different policy divergence measures affect exploration and performance. We further identify the KL3 estimator, a variance-reduced Monte Carlo estimator of the KL divergence, as a key policy divergence constraint. We theoretically demonstrate that the KL3-based constraint is mathematically equivalent to an asymmetric ratio-based clipping that reallocates probability mass toward high-confidence actions, promoting stronger exploration while retaining the simplicity of GRPO-style methods. Empirical results on mathematical reasoning benchmarks demonstrate that incorporating the KL3 estimator into GRPO improves both training stability and final performance, highlighting the importance of principled policy divergence constraints in policy optimization.
- Abstract(参考訳): Reinforcement Learning with Verified Reward (RLVR) は、Large Language Models (LLM) の推論能力を向上させるための重要なパラダイムとして登場した。
GRPOなどの既存のRLVR法の多くは、クリッピング率比を通じてポリシーのばらつきを制限することで安定した更新を保証する。
本稿では,政策の分散という一般的な概念を通じて既存の手法を特徴付ける統一型クリッピングフレームワークを提案する。
このフレームワークは、異なる政策分岐手段が探索と性能にどのように影響するかを体系的に分析するための原則化された基盤を提供する。
さらに、KL分散の分散還元モンテカルロ推定器であるKL3推定器を鍵方針分散制約として同定する。
我々は,KL3に基づく制約が非対称比に基づくクリッピングと数学的に等価であることを示す。
KL3推定器をGRPOに組み込むことで、トレーニングの安定性と最終的なパフォーマンスが向上し、ポリシー最適化における原則的ポリシー分散制約の重要性が浮き彫りになる。
関連論文リスト
- Rethinking the Trust Region in LLM Reinforcement Learning [72.25890308541334]
PPO(Proximal Policy Optimization)は、大規模言語モデル(LLM)のデファクト標準アルゴリズムとして機能する。
より原則的な制約でクリッピングを代用する多変量確率ポリシー最適化(DPPO)を提案する。
DPPOは既存の方法よりも優れたトレーニングと効率を実現し、RLベースの微調整のためのより堅牢な基盤を提供する。
論文 参考訳(メタデータ) (2026-02-04T18:59:04Z) - Entropy Ratio Clipping as a Soft Global Constraint for Stable Reinforcement Learning [49.92803982100042]
我々は,現在の政策と過去の政策のエントロピー比を新たなグローバル指標として用いることを提案する。
エントロピー比に双方向の制約を課すtextbfEntropy Ratio (ERC) 機構を導入する。
これは、グローバルな分布レベルでの政策更新を安定化させ、未サンプリングアクションの確率シフトを規制するPPOクリップの不能を補償する。
論文 参考訳(メタデータ) (2025-12-05T10:26:32Z) - On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning [59.11784194183928]
政策勾配アルゴリズムは大規模言語モデル(LLM)の推論能力の向上に成功している。
規則化されたポリシーグラディエント(RPG)ビューは、広く使われている$k_3$ペナルティが、正確には非正規化されたKLであることを示している。
RPG-REINFORCE with RPG-Style Clipは、DAPOよりも最大6ドル以上の絶対パーセンテージポイントの精度を向上させる。
論文 参考訳(メタデータ) (2025-05-23T06:01:21Z) - Behavior-Regularized Diffusion Policy Optimization for Offline Reinforcement Learning [22.333460316347264]
本稿では,拡散型ポリシーに適した行動規則化RLフレームワークであるBDPOを紹介する。
我々は,行動制約を尊重しながら最適なポリシーを生成する,効率的な2時間スケールアクタークリティカルなRLアルゴリズムを開発した。
論文 参考訳(メタデータ) (2025-02-07T09:30:35Z) - Counterfactual Explanation Policies in RL [3.674863913115432]
COUNTERPOLは、反実的説明を用いて強化学習ポリシーを分析する最初のフレームワークである。
RLにおけるCounterpolと広く利用されている信頼領域ベースのポリシー最適化手法の理論的関係を確立する。
論文 参考訳(メタデータ) (2023-07-25T01:14:56Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
我々は,MARL(Multi-Agent Reinforcement Learning)における分散政策の最適化のための新しい単調改善保証を提案する。
本研究では,訓練中のエージェント数に基づいて,独立した比率を限定することにより,信頼領域の制約を原則的に効果的に実施可能であることを示す。
論文 参考訳(メタデータ) (2022-01-31T20:39:48Z) - Dealing with Non-Stationarity in Multi-Agent Reinforcement Learning via
Trust Region Decomposition [52.06086375833474]
非定常性は多エージェント強化学習における厄介な問題である。
ポリシーシーケンスの定常性を明示的にモデル化するための$delta$-stationarity測定を導入する。
共同政策の分岐を推定するために,メッセージパッシングに基づく信頼領域分解ネットワークを提案する。
論文 参考訳(メタデータ) (2021-02-21T14:46:50Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
信頼地域政策最適化(TRPO)とPPO(Pximal Policy Optimization)は、深層強化学習(RL)において最も成功した政策勾配アプローチの一つである。
本稿では, 連続的な政策によって引き起こされる割引状態-行動訪問分布を, 近接項で抑制し, 政策改善を安定化させる新しいアルゴリズムを提案する。
提案手法は, ベンチマーク高次元制御タスクの安定性と最終的な性能向上に有効である。
論文 参考訳(メタデータ) (2020-03-09T13:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。