論文の概要: A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
- arxiv url: http://arxiv.org/abs/2602.05512v1
- Date: Thu, 05 Feb 2026 10:10:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 18:49:08.878599
- Title: A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
- Title(参考訳): 知識グラフ質問応答のためのLLM中心型ヒューマン・イン・ザ・ループアーキテクチャ
- Authors: Larissa Pusch, Alexandre Courtiol, Tim Conrad,
- Abstract要約: 大きな言語モデルは言語理解において優れているが、知識集約的なドメインでは限られている。
この研究は、LLMがCypherグラフクエリを生成して説明するインタラクティブなフレームワークを導入している。
- 参考スコア(独自算出の注目度): 41.99844472131922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
- Abstract(参考訳): 大言語モデル(LLM)は、言語理解において優れているが、幻覚、古い情報、限られた説明可能性のために知識集約的な領域に限られている。
テキストベースの検索強化生成(RAG)は、外部ソースの基底モデル出力を支援するが、マルチホップ推論に苦慮する。
対照的に、知識グラフ(KG)は正確で説明可能なクエリをサポートしますが、クエリ言語に関する知識が必要です。
この研究は、LLMがCypherグラフクエリを生成して説明するインタラクティブなフレームワークを導入し、ユーザはそれを自然言語で反復的に洗練する。
現実世界のKGに適用されたこのフレームワークは、事実の正確さとセマンティックな厳密さを保ちながら、複雑なデータセットへのアクセシビリティを改善し、ドメイン間でモデルパフォーマンスがどのように変化するかについての洞察を提供する。
我々は,Hyena KG と MaRDI (Mathematical Research Data Initiative) KG の2つの小さな実時間クエリ生成実験を補完して,複数の LLM におけるクエリ説明品質と障害検出を測定する合成フィルム KG の90クエリベンチマークを行った。
関連論文リスト
- Enrich-on-Graph: Query-Graph Alignment for Complex Reasoning with LLM Enriching [61.824094419641575]
大言語モデル(LLM)は知識グラフ質問応答(KGQA)のような知識集約的なシナリオにおける幻覚と事実的誤りに苦しむ
これは、構造化知識グラフ(KG)と非構造化クエリのセマンティックギャップによるもので、その焦点や構造に固有の違いが原因である。
既存の手法は通常、バニラKGの資源集約的で非スケーリング可能な推論を用いるが、このギャップを見落としている。
我々は、LLMの事前知識を活用してKGを充実させる柔軟なフレームワークEnrich-on-Graph(EoG)を提案し、グラフとクエリ間のセマンティックギャップを埋める。
論文 参考訳(メタデータ) (2025-09-25T06:48:52Z) - GRIL: Knowledge Graph Retrieval-Integrated Learning with Large Language Models [59.72897499248909]
本稿では,Large Language Models (LLM) を用いたエンドツーエンド学習のための新しいグラフ検索手法を提案する。
抽出したサブグラフでは, 構造的知識と意味的特徴をそれぞれ軟式トークンと言語化グラフで符号化し, LLMに注入する。
提案手法は、複雑な推論タスクに対する結合グラフ-LLM最適化の強みを検証し、最先端の性能を一貫して達成する。
論文 参考訳(メタデータ) (2025-09-20T02:38:00Z) - Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation [89.65955788873532]
オープンドメイン質問応答(OpenQA)は自然言語処理(NLP)の基盤である。
我々は,知識統合と制御可能生成を探求し,OpenQAの性能向上を目的としたGenKIという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-26T08:18:33Z) - Knowledge Graph-extended Retrieval Augmented Generation for Question Answering [10.49712834719005]
本稿では,Large Language Models (LLMs) とKGs (KGs) を統合するシステムを提案する。
結果として得られるアプローチは、KGを持つ検索拡張生成(RAG)の特定の形式に分類される。
質問分解モジュールを含み、マルチホップ情報検索と回答可能性を高める。
論文 参考訳(メタデータ) (2025-04-11T18:03:02Z) - Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM [8.941718961724984]
Pseudo-Knowledge Graph (PKG)フレームワークはメタパス検索、イングラフテキスト、ベクトル検索を大規模言語モデルに統合する。
PKGはより豊かな知識表現を提供し、情報検索の精度を向上させる。
論文 参考訳(メタデータ) (2025-03-01T02:39:37Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective [5.769786334333616]
大規模言語モデル(LLM)は、自動テキスト生成や質問応答などを含む自然言語処理(NLP)ベースのアプリケーションに革命をもたらした。
幻覚では、モデルがもっともらしい音を出すが、実際には正しくない反応を生成する。
本稿では,現状のデータセットやベンチマーク,知識統合や幻覚評価の手法など,これらのオープンな課題について論じる。
論文 参考訳(メタデータ) (2024-11-21T16:09:05Z) - Ontology Population using LLMs [0.9894420655516563]
知識グラフ(KG)は、データ統合、表現、可視化にますます活用されている。
LLMはそのようなタスクに有望な機能を提供し、自然言語の理解とコンテンツ生成に優れています。
本研究では、Enslaved.org Hub Ontologyに着目し、KG集団に対するLLMの有効性について検討した。
論文 参考訳(メタデータ) (2024-11-03T15:39:20Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
大規模言語モデル(LLM)は、関連する知識の欠如により、現実世界の応用において幻覚に悩まされることがある。
KGQA(Knowledge Graph Question Answering)は、統合のための重要な手掛かりとなる。
LLMの対話型学習機能を活用してグラフ上での推論と議論を行う対話型KGQAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-05T01:11:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。