論文の概要: Generalization of Self-Supervised Vision Transformers for Protein Localization Across Microscopy Domains
- arxiv url: http://arxiv.org/abs/2602.05527v1
- Date: Thu, 05 Feb 2026 10:39:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 18:49:08.888477
- Title: Generalization of Self-Supervised Vision Transformers for Protein Localization Across Microscopy Domains
- Title(参考訳): 顕微鏡領域横断のタンパク質局在化のための自己監督型視覚変換器の一般化
- Authors: Ben Isselmann, Dilara Göksu, Andreas Weinmann,
- Abstract要約: OpenCell データセット上でのタンパク質局在化のための DINO-pretrained Vision Transformer のクロスドメイン転送性について検討した。
我々は、ImageNet-1k、Human Protein Atlas(HPA)、OpenCellで事前訓練された3つのDINOバックボーンを用いて画像埋め込みを生成する。
すべての事前訓練されたモデルは、顕微鏡固有のHPA事前訓練モデルにより、最高の性能を達成する。
- 参考スコア(独自算出の注目度): 0.254890465057467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Task-specific microscopy datasets are often too small to train deep learning models that learn robust feature representations. Self-supervised learning (SSL) can mitigate this by pretraining on large unlabeled datasets, but it remains unclear how well such representations transfer across microscopy domains with different staining protocols and channel configurations. We investigate the cross-domain transferability of DINO-pretrained Vision Transformers for protein localization on the OpenCell dataset. We generate image embeddings using three DINO backbones pretrained on ImageNet-1k, the Human Protein Atlas (HPA), and OpenCell, and evaluate them by training a supervised classification head on OpenCell labels. All pretrained models transfer well, with the microscopy-specific HPA-pretrained model achieving the best performance (mean macro $F_1$-score = 0.8221 \pm 0.0062), slightly outperforming a DINO model trained directly on OpenCell (0.8057 \pm 0.0090). These results highlight the value of large-scale pretraining and indicate that domain-relevant SSL representations can generalize effectively to related but distinct microscopy datasets, enabling strong downstream performance even when task-specific labeled data are limited.
- Abstract(参考訳): タスク固有の顕微鏡データセットは、しばしば、堅牢な特徴表現を学ぶディープラーニングモデルを訓練するには小さすぎる。
自己教師付き学習(SSL)は、大規模なラベル付きデータセットを事前トレーニングすることで、これを緩和することができるが、このような表現が、異なる染色プロトコルとチャネル構成を持つ顕微鏡ドメイン間でどのように転送されるかは、まだ不明である。
OpenCell データセット上でのタンパク質局在化のための DINO-pretrained Vision Transformer のクロスドメイン転送性について検討した。
我々は、ImageNet-1k、Human Protein Atlas(HPA)、OpenCellで事前訓練された3つのDINOバックボーンを用いて画像埋め込みを生成し、それらをOpenCellラベル上で教師付き分類ヘッドをトレーニングすることで評価する。
すべての事前訓練されたモデルは、顕微鏡固有のHPA事前訓練モデルが最高のパフォーマンスを達成する(平均マクロ$F_1$-score = 0.8221 \pm 0.0062)ことで、OpenCell(0.8057 \pm 0.0090)上で直接トレーニングされたDINOモデルよりも若干優れていた。
これらの結果は大規模事前トレーニングの価値を強調し、ドメイン関連SSL表現が関連するが異なる顕微鏡データセットに効果的に一般化できることを示し、タスク固有のラベル付きデータが制限された場合でも、強力なダウンストリーム性能を実現する。
関連論文リスト
- Hierarchical Multi-Label Classification with Missing Information for Benthic Habitat Imagery [1.6492989697868894]
複数のレベルのアノテーション情報が存在するシナリオでHMLトレーニングを行う能力を示す。
その結果,局所的・局所的なベントニック・サイエンス・プロジェクトで典型的な,より小さなワンホット・イメージ・ラベル・データセットを使用する場合,イメージネット上で事前学習したドメイン内ベントニック・データの大規模な収集に対して,自己スーパービジョンで事前学習したモデルの方が優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-10T16:15:01Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology [2.7280901660033643]
本研究は、弱教師付き分類器と自己教師付きマスク付きオートエンコーダ(MAE)のスケーリング特性について検討する。
以上の結果から,ViTをベースとしたMAEは,様々なタスクにおいて弱い教師付き分類器よりも優れており,公的なデータベースから得られた既知の生物学的関係を思い出すと,11.5%の相対的な改善が達成されることがわかった。
我々は、異なる数のチャネルと順序の画像を推論時に入力できる新しいチャネルに依存しないMAEアーキテクチャ(CA-MAE)を開発した。
論文 参考訳(メタデータ) (2024-04-16T02:42:06Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Spatio-Temporal Encoding of Brain Dynamics with Surface Masked Autoencoders [10.097983222759884]
表面仮面オートエンコーダ(sMAE)と表面仮面オートエンコーダ(MAE)
これらのモデルは、皮質発達と構造関数の強力な潜在表現を学習することにより、入力のマスクされたバージョンから皮質特徴写像を再構築するように訓練されている。
以上の結果から, (v)sMAE事前学習モデルでは, 複数のタスクにおける表現型予測性能が約26%向上し,スクラッチからトレーニングしたモデルに対してより高速な収束が得られた。
論文 参考訳(メタデータ) (2023-08-10T10:01:56Z) - Leveraging generative adversarial networks to create realistic scanning
transmission electron microscopy images [2.5954872177280346]
機械学習は、自律的なデータ収集と処理を通じて材料研究に革命をもたらす可能性がある。
我々は,実空間周波数情報を用いたシミュレーションデータを増大させるために,相互空間判別器を備えたサイクル生成逆数ネットワーク(CycleGAN)を用いる。
完全な畳み込みネットワーク(FCN)をトレーニングして、450万個の原子データセット内の単一原子欠陥を同定することで、我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-18T19:19:27Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
トランスフォーマーに基づく教師付き事前訓練は、人物再識別(ReID)において大きなパフォーマンスを達成する
ImageNetとReIDデータセットのドメインギャップのため、通常、パフォーマンスを高めるために、より大きなトレーニング済みデータセットが必要です。
この研究は、データとモデル構造の観点から、事前トレーニングデータセットとReIDデータセットのギャップを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-11-23T18:59:08Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Global Voxel Transformer Networks for Augmented Microscopy [54.730707387866076]
本稿では,拡張顕微鏡のための高度な深層学習ツールであるグローバルボクセルトランスフォーマーネットワーク(GVTNets)を紹介する。
GVTNetはグローバルな情報収集が可能なグローバルなボクセル変換演算子(GVTO)上に構築されている。
提案手法を既存のデータセットに適用し,様々な環境下での3種類の拡張顕微鏡タスクについて検討する。
論文 参考訳(メタデータ) (2020-08-05T20:11:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。