論文の概要: Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
- arxiv url: http://arxiv.org/abs/2404.10242v1
- Date: Tue, 16 Apr 2024 02:42:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 18:12:17.439652
- Title: Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
- Title(参考訳): 顕微鏡用マスケオートエンコーダは細胞生物学のスケーラブルな学習者である
- Authors: Oren Kraus, Kian Kenyon-Dean, Saber Saberian, Maryam Fallah, Peter McLean, Jess Leung, Vasudev Sharma, Ayla Khan, Jia Balakrishnan, Safiye Celik, Dominique Beaini, Maciej Sypetkowski, Chi Vicky Cheng, Kristen Morse, Maureen Makes, Ben Mabey, Berton Earnshaw,
- Abstract要約: 本研究は、弱教師付き分類器と自己教師付きマスク付きオートエンコーダ(MAE)のスケーリング特性について検討する。
以上の結果から,ViTをベースとしたMAEは,様々なタスクにおいて弱い教師付き分類器よりも優れており,公的なデータベースから得られた既知の生物学的関係を思い出すと,11.5%の相対的な改善が達成されることがわかった。
我々は、異なる数のチャネルと順序の画像を推論時に入力できる新しいチャネルに依存しないMAEアーキテクチャ(CA-MAE)を開発した。
- 参考スコア(独自算出の注目度): 2.7280901660033643
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spanning millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond.
- Abstract(参考訳): 生物学的研究に使用する顕微鏡画像の小型化は、特に数百万枚の画像にまたがる大規模な実験において重要な課題である。
本研究は,より大規模なモデルバックボーンと顕微鏡データセットを用いたトレーニングにおいて,弱教師付き分類器と自己教師付きマスク付きオートエンコーダ(MAE)のスケーリング特性について検討する。
以上の結果から,ViTをベースとしたMAEは,様々なタスクにおいて弱い教師付き分類器よりも優れており,公的なデータベースから得られた既知の生物学的関係を思い出すと,11.5%の相対的な改善が達成されることがわかった。
さらに,チャネルに依存しない新しいMAEアーキテクチャ(CA-MAE)を開発し,異なる数のチャネルと順序の画像を推論時に入力する。
実験条件の異なる顕微鏡画像データセット(JUMP-CP)を予備学習データ(RPI-93M)と異なるチャネル構造で推定し,評価することにより,CA-MAEが効果的に一般化できることを実証した。
我々の研究は、薬物発見等の進歩を触媒する可能性を持つ細胞生物学の強力な基盤モデルを構築するために、顕微鏡データに基づく自己教師型学習のスケーリングに関する継続的な研究を動機付けている。
関連論文リスト
- ViTally Consistent: Scaling Biological Representation Learning for Cell Microscopy [3.432992120614117]
細胞顕微鏡データの基盤モデルとしては,これまでで最大である。
従来のViT-L/8 MAEと比較して, 遺伝的摂動の線形分離性は60%向上した。
論文 参考訳(メタデータ) (2024-11-04T20:09:51Z) - μ-Bench: A Vision-Language Benchmark for Microscopy Understanding [43.27182445778988]
視覚言語モデル(VLM)は、大規模生物学的画像解析に有望なソリューションを提供する。
VLMを評価するための、標準化された、多様な、そして大規模なビジョンベンチマークが欠如している。
mu-Benchは22のバイオメディカルタスクを含む専門家によるベンチマークである。
論文 参考訳(メタデータ) (2024-07-01T20:30:26Z) - Weakly Supervised Set-Consistency Learning Improves Morphological Profiling of Single-Cell Images [0.6491172192043603]
単一セル画像における摂動効果の学習表現を改善するために,設定レベルの整合性学習アルゴリズムset-DINOを提案する。
5000以上の遺伝的摂動を伴う大規模光ポーリングスクリーニングデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-06-08T00:53:30Z) - Masked Autoencoders are Scalable Learners of Cellular Morphology [0.3057210732296065]
本研究は,大規模な顕微鏡データセット上で大規模モデルをトレーニングする際の,自己教師型ディープラーニングアプローチのスケールアップ方法について検討する。
以上の結果から,CNNとViTをベースとしたマスク付きオートエンコーダはともに,教師付きベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2023-09-27T23:11:35Z) - SurgMAE: Masked Autoencoders for Long Surgical Video Analysis [4.866110274299399]
マスク付きオートエンコーダ(MAE)は視覚変換器(ViT)の自己監督パラダイムに注目された
本稿では,外科的ビデオ領域における転送可能な表現をMAEが学習できるかどうかを最初に検討する。
本稿では,MAE用高テンポラルトークンをサンプリングするマスキング戦略を備えた新しいアーキテクチャであるSurgMAEを提案する。
論文 参考訳(メタデータ) (2023-05-19T06:12:50Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for
prior-informed assessment of muscle function and pathology [48.54269377408277]
本稿では,仮説駆動型先行処理をデータ駆動型ディープラーニングアプローチに統合した,SEMPAI(Self-Enhancing Multi-Photon Artificial Intelligence)を紹介する。
SEMPAIは、小さなデータセットの予測を可能にするために、いくつかのタスクを共同で学習する。
SEMPAIは、少ないデータを含む7つの予測タスクのうち6つにおいて、最先端のバイオマーカーよりも優れています。
論文 参考訳(メタデータ) (2022-10-28T17:03:04Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
本稿では,AGARデータセットを用いた3つの深層学習手法の性能について検討する。
得られた結果は将来の実験のベンチマークとして機能するかもしれない。
論文 参考訳(メタデータ) (2021-08-23T12:06:00Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。