論文の概要: Trustworthy AI Software Engineers
- arxiv url: http://arxiv.org/abs/2602.06310v1
- Date: Fri, 06 Feb 2026 02:08:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.189315
- Title: Trustworthy AI Software Engineers
- Title(参考訳): 信頼できるAIソフトウェアエンジニア
- Authors: Aldeida Aleti, Baishakhi Ray, Rashina Hoda, Simin Chen,
- Abstract要約: 私たちは、AIエージェントがソフトウェアエンジニアとみなされることの意味を再検討します。
AIソフトウェアエンジニアの信頼性に寄与する重要な側面を特定します。
我々は、将来の人間-AI SEチームへの適切な信頼を可能にするために、倫理・デザインのアプローチを議論する。
- 参考スコア(独自算出の注目度): 26.716995469622265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid rise of AI coding agents, the fundamental premise of what it means to be a software engineer is in question. In this vision paper, we re-examine what it means for an AI agent to be considered a software engineer and then critically think about what makes such an agent trustworthy. \textit{Grounded} in established definitions of software engineering (SE) and informed by recent research on agentic AI systems, we conceptualise AI software engineers as participants in human-AI SE teams composed of human software engineers and AI models and tools, and we distinguish trustworthiness as a key property of these systems and actors rather than a subjective human attitude. Based on historical perspectives and emerging visions, we identify key dimensions that contribute to the trustworthiness of AI software engineers, spanning technical quality, transparency and accountability, epistemic humility, and societal and ethical alignment. We further discuss how trustworthiness can be evaluated and demonstrated, highlighting a fundamental trust measurement gap: not everything that matters for trust can be easily measured. Finally, we outline implications for the design, evaluation, and governance of AI SE systems, advocating for an ethics-by-design approach to enable appropriate trust in future human-AI SE teams.
- Abstract(参考訳): AIコーディングエージェントの急速な普及に伴い、それがソフトウェアエンジニアであることの基本的な前提が疑問視されている。
このビジョンペーパーでは、AIエージェントがソフトウェアエンジニアと見なす意味を再検討し、そのようなエージェントを信頼できるものにする方法を批判的に考えます。
エージェントAIシステムに関する最近の研究により、ソフトウェア工学(SE)の確立された定義において、我々は、AIソフトウェア技術者を人間のソフトウェア技術者とAIモデルとツールからなる人間-AI SEチームの一員として概念化し、信頼感を、主観的な人間の態度ではなく、これらのシステムとアクターの重要な特性として区別する。
歴史的視点と新たなビジョンに基づいて、技術的品質、透明性と説明責任、認識の謙虚さ、社会的および倫理的整合性など、AIソフトウェアエンジニアの信頼性に寄与する重要な側面を特定します。
さらに、信頼度がどのように評価され、実証され、基本的な信頼度測定ギャップが強調されるかについても論じる。
最後に、AI SEシステムの設計、評価、ガバナンスの意義を概説し、将来の人間-AI SEチームへの適切な信頼を可能にする倫理的デザインアプローチを提唱する。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Trust in AI: Progress, Challenges, and Future Directions [6.724854390957174]
私たちの日常生活における人工知能(AI)システムの利用の増加は、ユーザの視点からAIにおける信頼と不信の重要性を説明してくれます。
AIにおける信頼/不信は規制官の役割を担い、この拡散のレベルを著しく制御することができる。
論文 参考訳(メタデータ) (2024-03-12T20:26:49Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
我々は、MATCHと呼ばれる概念モデルを開発するために、技術に対する信頼に関するコミュニケーション理論と文献から引き出す。
私たちは、AIシステムの能力として透明性とインタラクションを強調します。
我々は、技術クリエーターが使用する適切な方法を特定するのに役立つ要件のチェックリストを提案する。
論文 参考訳(メタデータ) (2022-04-29T00:14:33Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Know Your Model (KYM): Increasing Trust in AI and Machine Learning [4.93786553432578]
信頼度の各要素を分析し、最適なAI機能を確保するために活用できる20のガイドラインのセットを提供します。
このガイドラインは、信頼性が証明可能で、実証可能であること、実装に依存しないこと、あらゆる分野のあらゆるAIシステムに適用可能であることを保証する。
論文 参考訳(メタデータ) (2021-05-31T14:08:22Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Opening the Software Engineering Toolbox for the Assessment of
Trustworthy AI [17.910325223647362]
我々は、信頼できるAIを評価するためのソフトウェアエンジニアリングとテストプラクティスの適用について論じる。
欧州委員会のAIハイレベル専門家グループによって定義された7つの重要な要件の関連付けを行います。
論文 参考訳(メタデータ) (2020-07-14T08:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。