論文の概要: HyQuRP: Hybrid quantum-classical neural network with rotational and permutational equivariance for 3D point clouds
- arxiv url: http://arxiv.org/abs/2602.06381v1
- Date: Fri, 06 Feb 2026 04:32:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.234885
- Title: HyQuRP: Hybrid quantum-classical neural network with rotational and permutational equivariance for 3D point clouds
- Title(参考訳): HyQuRP:3次元点雲の回転と置換の等価性を持つハイブリッド量子古典ニューラルネットワーク
- Authors: Semin Park, Chae-Yeun Park,
- Abstract要約: HyQuRPは、回転と置換の対称性に同値なハイブリッド量子古典ニューラルネットワークである。
スパースポイント状態において、HyQuRPは、強い古典的および量子的基底線よりも一貫して優れる。
- 参考スコア(独自算出の注目度): 0.6445605125467574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce HyQuRP, a hybrid quantum-classical neural network equivariant to rotational and permutational symmetries. While existing equivariant quantum machine learning models often rely on ad hoc constructions, HyQuRP is built upon the formal foundations of group representation theory. In the sparse-point regime, HyQuRP consistently outperforms strong classical and quantum baselines across multiple benchmarks. For example, when six subsampled points are used, HyQuRP ($\sim$1.5K parameters) achieves 76.13% accuracy on the 5-class ModelNet benchmark, compared to approximately 71% for PointNet, PointMamba, and PointTransformer with similar parameter counts. These results highlight HyQuRP's exceptional data efficiency and suggest the potential of quantum machine learning models for processing 3D point cloud data.
- Abstract(参考訳): 我々は、回転および置換対称性に同値なハイブリッド量子古典型ニューラルネットワークHyQuRPを紹介する。
既存の等変量子機械学習モデルは、しばしばアドホックな構成に依存するが、HyQuRPは群表現論の形式的な基礎の上に構築されている。
スパースポイント方式では、HyQuRPは複数のベンチマークにおいて、強い古典的および量子的ベースラインを一貫して上回る。
例えば、6つのサブサンプルポイントを使用する場合、HyQuRP(\sim$1.5K)は5クラスのModelNetベンチマークで76.13%の精度を達成する。
これらの結果はHyQuRPの例外的なデータ効率を強調し、3Dポイントクラウドデータを処理する量子機械学習モデルの可能性を示唆している。
関連論文リスト
- Towards Quantum Enhanced Adversarial Robustness with Rydberg Reservoir Learning [45.92935470813908]
量子コンピューティング貯水池(QRC)は、量子多体系に固有の高次元非線形力学を利用する。
近年の研究では、変動回路に基づく摂動量子は逆数の影響を受けやすいことが示されている。
QR学習モデルにおける対向的堅牢性の最初の体系的評価について検討する。
論文 参考訳(メタデータ) (2025-10-15T12:17:23Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [50.95799256262098]
変分量子回路(VQC)は量子機械学習を約束するが、表現性、訓練性、耐雑音性の課題に直面している。
本稿では,VQCが学習中に古典多層パーセプトロンの第一層重みを生成するハイブリッドアーキテクチャであるVQC-MLPNetを提案する。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - An ensemble framework approach of hybrid Quantum convolutional neural networks for classification of breast cancer images [2.1659912179830023]
量子ニューラルネットワークは、ネットワークモデルを学習してスケールアップする能力において、古典的なニューラルネットワークを置き換えるのに適していると考えられている。
医用画像分類は、ディープラーニング、特に畳み込みニューラルネットワークの応用によく関係している。
論文 参考訳(メタデータ) (2024-09-24T10:43:27Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
我々は、MNIST桁の画像を低次元の特徴空間に圧縮する画像分類のためのハイブリッド量子古典モデルを実装した。
オートエンコーダは、各28タイムs28$イメージ(784ピクセル)を64次元潜在ベクトルに圧縮する。
これらの特徴を5量子ビット量子状態にマッピングする。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - The role of data embedding in equivariant quantum convolutional neural
networks [2.255961793913651]
等変量子ニューラルネットワーク(EQNN)の性能に及ぼす古典量子埋め込みの影響について検討する。
等価な量子畳み込みニューラルネットワーク(QCNN)から得られた3種類の振幅埋め込みと、EQCNNの分類精度を数値的に比較する。
論文 参考訳(メタデータ) (2023-12-20T18:25:15Z) - Approximately Equivariant Quantum Neural Network for $p4m$ Group
Symmetries in Images [30.01160824817612]
本研究では、平面$p4m$対称性に基づく画像分類のための同変量子畳み込みニューラルネットワーク(EquivQCNNs)を提案する。
2次元イジングモデルの位相検出や拡張MNISTデータセットの分類など、さまざまなユースケースでテストされた結果を示す。
論文 参考訳(メタデータ) (2023-10-03T18:01:02Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
変動量子回路(VQC)における重み付けの考え方を紹介する。
我々は,8つの分類データセットに対する影響を評価するために,7つの異なる重み再マッピング関数を用いる。
以上の結果から,重量再マッピングによりVQCの収束速度が向上することが示唆された。
論文 参考訳(メタデータ) (2023-06-09T09:42:21Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。