論文の概要: Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
- arxiv url: http://arxiv.org/abs/2408.03351v2
- Date: Thu, 31 Jul 2025 16:45:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:08.017522
- Title: Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
- Title(参考訳): ハイブリッド量子古典的アプローチを用いたMNIST分類のための量子伝達学習
- Authors: Soumyadip Sarkar,
- Abstract要約: 我々は、MNIST桁の画像を低次元の特徴空間に圧縮する画像分類のためのハイブリッド量子古典モデルを実装した。
オートエンコーダは、各28タイムs28$イメージ(784ピクセル)を64次元潜在ベクトルに圧縮する。
これらの特徴を5量子ビット量子状態にマッピングする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We implement a hybrid quantum-classical model for image classification that compresses MNIST digit images into a low-dimensional feature space and then maps these features onto a 5-qubit quantum state. First, an autoencoder compresses each $28\times28$ image (784 pixels) into a 64-dimensional latent vector, preserving salient features of the digit with minimal reconstruction error. We further reduce the latent representation to 5 principal components using Principal Component Analysis (PCA), to match the 5 available qubits. These 5 features are encoded as rotation angles in a quantum circuit with 5 qubits. The quantum feature map applies single-qubit rotations ($R_y$ gates) proportional to the feature values, followed by a Hadamard gate and a cascade of entangling CNOT gates to produce a non-product entangled state. Measuring the 5-qubit state yields a 32-dimensional probability distribution over basis outcomes, which serves as a quantum-enhanced feature vector for classification. A classical neural network with a softmax output is then trained on these 32-dimensional quantum feature vectors to predict the digit class. We evaluate the hybrid model on the MNIST dataset and compare it to a purely classical baseline that uses the 64-dimensional autoencoder latent features for classification. The results show that the hybrid model can successfully classify digits, demonstrating the feasibility of integrating quantum computing in the classification pipeline, although its accuracy (about 75\% on test data) currently falls below the classical baseline (about 98\% on the same compressed data).
- Abstract(参考訳): 我々は、MNIST桁の画像を低次元の特徴空間に圧縮し、これらの特徴を5量子ビットの量子状態にマッピングする、画像分類のためのハイブリッド量子古典モデルを実装した。
まず、オートエンコーダは、各28\times28$イメージ(784ピクセル)を64次元潜在ベクトルに圧縮し、最小再構成誤差で桁の健全な特徴を保存する。
さらに、5つの利用可能なキュービットに一致するように、主成分分析(PCA)を用いて、潜在表現を5つの主成分に減らします。
これらの5つの特徴は、5量子ビットの量子回路において回転角として符号化される。
量子特徴写像は、特徴値に比例する1量子ビット回転(R_y$ gates)を施し、続いてアダマールゲートとCNOTゲートを絡めて非生産的絡み合った状態を生成するカスケードが続く。
5量子状態を測定すると、基底結果よりも32次元の確率分布が得られ、分類のための量子化された特徴ベクトルとして機能する。
次に、ソフトマックス出力を持つ古典的ニューラルネットワークをこれらの32次元量子特徴ベクトルでトレーニングし、桁のクラスを予測する。
MNISTデータセット上のハイブリッドモデルを評価し,64次元オートエンコーダの潜在特徴を分類に用いた,純粋に古典的なベースラインと比較した。
その結果、このハイブリッドモデルは、量子コンピューティングを分類パイプラインに組み込む可能性を示しているが、その精度(テストデータでは約75倍)は、現在古典的なベースライン(同じ圧縮データでは約98倍)を下回っている。
関連論文リスト
- Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
本稿では,4量子ビット量子回路と古典的ニューラルネットワークを組み合わせた,分類タスクのためのハイブリッド量子古典型機械学習モデルを提案する。
このモデルは20エポック以上で訓練され、16エポックに設定されたIrisデータセットテストで100%の精度を達成した。
この研究は、ハイブリッド量子古典モデルの研究の活発化と、実際のデータセットへの適用性に寄与する。
論文 参考訳(メタデータ) (2024-10-21T13:15:12Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
最初の考慮事項の1つは、量子機械学習モデル自体の設計である。
最近の研究は、スピードアップによる量子アドバンテージが量子機械学習の正しい目標かどうかを疑問視し始めた。
本稿では,古典的なディープラーニングアルゴリズムの設計を量子ニューラルネットワークの設計に取り入れることで,代替手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T06:31:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Towards Transfer Learning for Large-Scale Image Classification Using
Annealing-based Quantum Boltzmann Machines [7.106829260811707]
本稿では,Quantum Annealing (QA) を用いた画像分類手法を提案する。
本稿では,アニール型量子ボルツマンマシンをハイブリッド量子古典パイプラインの一部として用いることを提案する。
提案手法は,テスト精度とAUC-ROC-Scoreの点で,古典的ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-27T16:07:49Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Photonic Quantum Computing For Polymer Classification [62.997667081978825]
2つのポリマークラス (VIS) と近赤外 (NIR) は, ポリマーギャップの大きさに基づいて定義される。
高分子構造の二項分類に対する古典量子ハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2022-11-22T11:59:52Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。