論文の概要: Integrating AI and Quantum-Inspired Techniques for Efficient Enzyme Fermentation Optimization
- arxiv url: http://arxiv.org/abs/2602.06420v2
- Date: Mon, 09 Feb 2026 05:14:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 17:49:39.496143
- Title: Integrating AI and Quantum-Inspired Techniques for Efficient Enzyme Fermentation Optimization
- Title(参考訳): 効率的な酵素発酵最適化のためのAIと量子インスピレーション技術の統合
- Authors: Ying-Wei Tseng, Yu-Ting Kao, Yeong-Jar Chang, Jia-Han Ou, Wen-Zhi Zhang, Jin-Jia Wang, Yung-Hsiang Lin,
- Abstract要約: 本稿では,人工知能(AI)と量子インスピレーション技術を組み合わせた新しい手法を提案する。
高度なソフトウェアシミュレーションを使用することで、従来の物理実験と比較して時間とコストが大幅に削減される。
この研究は酵素発酵に焦点を当て、より少ない実験でより良い結果が得られることを示した。
- 参考スコア(独自算出の注目度): 2.6072409193993282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a new method that combines Artificial Intelligence (AI) and quantum-inspired techniques to improve the efficiency of multi-variable optimization experiments. By using advanced software simulations, this approach significantly reduces the time and cost compared to traditional physical experiments. The research focuses on enzyme fermentation, demonstrating that this method can achieve better results with fewer experiments. The findings highlight the potential of this approach to more effectively identify optimal formulations, leading to advancements in enzyme fermentation and other fields that require complex optimization. Initially, the Active Ingredients (AIN) could not be improved even after 600 experiments. However, by adopting the method outlined in this paper, we were able to identify a better formula in just 405 experiments. This resulted in an increase of AIN from 8481 to 10068, representing an improvement of 18.7%.
- Abstract(参考訳): 本稿では,多変数最適化実験の効率を向上させるために,人工知能(AI)と量子インスピレーション技術を組み合わせた新しい手法を提案する。
高度なソフトウェアシミュレーションを使用することで、従来の物理実験と比較して時間とコストが大幅に削減される。
この研究は酵素発酵に焦点を当て、より少ない実験でより良い結果が得られることを示した。
この結果は、最適な定式化をより効果的に特定するこのアプローチの可能性を強調し、酵素発酵やその他の複雑な最適化を必要とする分野の進歩につながった。
当初、アクティブイングレディエント (AIN) は600の実験後も改善できなかった。
しかし,本論文で概説した手法を用いることで,405実験でより優れた式を同定することができた。
その結果、AINは8481から10068に増加し、18.7%が改善した。
関連論文リスト
- Achieving Sub-Exponential Speedup in Gate-Based Quantum Computing for Quadratic Unconstrained Binary Optimization [0.0]
本稿では,SAとGroverのアルゴリズムを統合し,サブ指数高速化を実現するハイブリッドアプローチを提案する。
酵素発酵では、温度、かき混ぜ、待ち時間、pH、トリプトファン、米粉などの変数を625のバイナリパラメータでコードする。
QUBOコストの最小化は、有効成分の最大化に対応する。
論文 参考訳(メタデータ) (2025-10-17T05:56:43Z) - Quantum Approximate Optimization Algorithm for MIMO with Quantized b-bit Beamforming [47.98440449939344]
多重入力多重出力(MIMO)は6G通信において重要であり、スペクトル効率と信頼性の向上を提供する。
本稿では、送信機と受信機の両方でbビット量子化位相シフト器の問題に対処するために、量子近似最適化アルゴリズム(QAOA)と交互最適化を適用することを検討する。
この量子化ビームフォーミング問題の構造はQAOAのようなハイブリッド古典的手法と自然に一致し、ビームフォーミングで使われる位相シフトは量子回路の回転ゲートに直接マッピングできる。
論文 参考訳(メタデータ) (2025-10-07T17:53:02Z) - Learning Feasible Quantum States for Quadratic Constrained Binary Optimization Problems [41.23247424467223]
我々はQCBOの制約を満たす量子状態の同値重ね合わせを生成する変動的アプローチを開発する。
結果として生じる同値な重ね合わせは、QUBO/QCBOを解く量子アルゴリズムの初期状態として使用できる。
論文 参考訳(メタデータ) (2025-08-04T16:44:53Z) - Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
本稿では,LCU演算子の線形結合として表現できる演算子の期待値を計算するための新しい手法を提案する。
この方法は任意の量子アルゴリズムに対して一般的であり、変分量子アルゴリズムの加速に特に関心がある。
論文 参考訳(メタデータ) (2025-03-03T17:15:23Z) - Variational Quantum Algorithm for Constrained Topology Optimization [4.067407250874754]
制約付き位相最適化のための新しい変分量子アルゴリズムを提案する。
提案する量子アルゴリズムのゲート複雑性を解析する。
このアルゴリズムはトラス構造やMesserschmitt-B"olkow-Blohmビームなどのコンプライアンス問題で実証される。
論文 参考訳(メタデータ) (2024-12-10T01:38:40Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
本稿では,デジタルカウンセバティック量子最適化(DCQO)パラダイムを用いて,ポートフォリオ最適化のための高速なディジタル量子アルゴリズムを提案する。
提案手法は,アルゴリズムの回路深度要件を特に低減し,解の精度を向上し,現在の量子プロセッサに適している。
我々は,IonQトラップイオン量子コンピュータ上で最大20量子ビットを使用するプロトコルの利点を実験的に実証した。
論文 参考訳(メタデータ) (2023-08-29T17:53:08Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
実数値の高次非制約二項最適化問題をサポートする量子アルゴリズムを提案する。
提案アルゴリズムは,古典的領域におけるクエリの複雑さを低減し,量子領域における2次高速化を実現する。
論文 参考訳(メタデータ) (2022-05-31T00:14:49Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。