論文の概要: On the Plasticity and Stability for Post-Training Large Language Models
- arxiv url: http://arxiv.org/abs/2602.06453v1
- Date: Fri, 06 Feb 2026 07:31:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.282255
- Title: On the Plasticity and Stability for Post-Training Large Language Models
- Title(参考訳): 学習後の大規模言語モデルの可塑性と安定性について
- Authors: Wenwen Qiang, Ziyin Gu, Jiahuan Zhou, Jie Hu, Jingyao Wang, Changwen Zheng, Hui Xiong,
- Abstract要約: 塑性と安定性勾配の矛盾として根本原因を同定する。
本稿では,確率的衝突解決法(PCR)を提案する。
PCRはトレーニングの軌道を著しく滑らかにし、様々な推論タスクにおいて優れたパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 54.757672540381236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training stability remains a critical bottleneck for Group Relative Policy Optimization (GRPO), often manifesting as a trade-off between reasoning plasticity and general capability retention. We identify a root cause as the geometric conflict between plasticity and stability gradients, which leads to destructive interference. Crucially, we argue that deterministic projection methods are suboptimal for GRPO as they overlook the intrinsic stochasticity of group-based gradient estimates. To address this, we propose Probabilistic Conflict Resolution (PCR), a Bayesian framework that models gradients as random variables. PCR dynamically arbitrates conflicts via an uncertainty-aware ``soft projection'' mechanism, optimizing the signal-to-noise ratio. Extensive experiments demonstrate that PCR significantly smooths the training trajectory and achieves superior performance in various reasoning tasks.
- Abstract(参考訳): 訓練安定性はグループ相対政策最適化(GRPO)にとって重要なボトルネックであり、しばしば可塑性と一般的な能力維持のトレードオフとして表される。
根本原因は, 塑性と安定性勾配の幾何学的衝突であり, 破壊的干渉を引き起こす。
重要なことは、決定論的射影法は、群ベース勾配推定の内在的確率性を見越すため、GRPOの準最適である。
これを解決するために,確率的衝突解決法 (PCR) を提案し,確率変数として勾配をモデル化するベイズ的フレームワークを提案する。
PCRは、不確実性を認識した ` `soft projection'' メカニズムを介して競合を動的に調停し、信号対雑音比を最適化する。
PCRはトレーニングの軌道を著しくスムーズにし,様々な推論タスクにおいて優れた性能を発揮することが実証された。
関連論文リスト
- Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities [10.235183326885794]
RLVR(Reinforcement Learning with Verifiable Rewards)は、Large Language Models(LLMs)における推論の強化に欠かせないパラダイムとして登場した。
我々は、この問題をサンプリング確率力学の観点から分析し、標準目的が高次様相の経路を不均等に強化することを特定する。
提案手法は,すべての応答に対する信頼度を平衡化するための新しいアドバンテージ再重み付け機構 (ARM) を提案する。
論文 参考訳(メタデータ) (2026-02-05T04:06:55Z) - Rethinking the Trust Region in LLM Reinforcement Learning [72.25890308541334]
PPO(Proximal Policy Optimization)は、大規模言語モデル(LLM)のデファクト標準アルゴリズムとして機能する。
より原則的な制約でクリッピングを代用する多変量確率ポリシー最適化(DPPO)を提案する。
DPPOは既存の方法よりも優れたトレーニングと効率を実現し、RLベースの微調整のためのより堅牢な基盤を提供する。
論文 参考訳(メタデータ) (2026-02-04T18:59:04Z) - Not All Preferences Are Created Equal: Stability-Aware and Gradient-Efficient Alignment for Reasoning Models [52.48582333951919]
ポリシー更新の信号対雑音比を最大化することにより、アライメントの信頼性を高めるために設計された動的フレームワークを提案する。
SAGE(Stability-Aware Gradient Efficiency)は、モデル能力に基づいて候補プールをリフレッシュする粗いきめ細かいカリキュラムメカニズムを統合する。
複数の数学的推論ベンチマークの実験により、SAGEは収束を著しく加速し、静的ベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2026-02-01T12:56:10Z) - Contextual Distributionally Robust Optimization with Causal and Continuous Structure: An Interpretable and Tractable Approach [2.8445258546547625]
文脈分布ロバスト最適化(DRO)のためのフレームワークを提案する。
まず, エントロピー規則化因果距離であるSinkhorn discrepancy (CSD) を導入する。
コーサルシンクホーンDRO(Causal-SDRO)と呼ばれる,CSDに基づく曖昧性集合を持つ文脈的DROモデルを導出する。
本稿では,任意の可測関数空間内の最適ポリシを近似するソフトフォレスト回帰(SRF)決定則を提案する。
論文 参考訳(メタデータ) (2026-01-16T06:18:22Z) - DaGRPO: Rectifying Gradient Conflict in Reasoning via Distinctiveness-Aware Group Relative Policy Optimization [20.66452395111739]
識別性を考慮したグループ相対ポリシー最適化(DaGRPO)を提案する。
DaGRPOは,(1)微粒なスコアリングを利用して,低差別性でサンプルペアを動的にマスキングするシーケンスレベルのグラディエント・リクティフィケーション,(2)高品質なアンカーを導入し,課題に対処するためのトレーニング信号の復元を行うオフ・ポリシー・データ・アジュメンテーションという2つのコアメカニズムを取り入れている。
詳細な分析により、DaGRPOは勾配の爆発を効果的に軽減し、長鎖推論能力の出現を加速することを確認した。
論文 参考訳(メタデータ) (2025-12-06T07:51:36Z) - Policy Regularized Distributionally Robust Markov Decision Processes with Linear Function Approximation [10.35045003737115]
分散シフトによる意思決定は、トレーニングとデプロイメント環境が異なる強化学習(RL)における中心的な課題である。
本稿では,モデルのないオンラインポリシー最適化手法DR-RPOを提案する。
DR-RPO は,ロバストな RL における準最適境界とサンプル効率を実現し,値に基づく手法の性能に適合することを示す。
論文 参考訳(メタデータ) (2025-10-16T02:56:58Z) - Stabilizing Policy Gradients for Sample-Efficient Reinforcement Learning in LLM Reasoning [77.92320830700797]
強化学習は、大規模言語モデルの推論機能を実現する上で中心的な役割を果たしてきた。
本稿では,ポリシー更新時の曲率情報を追跡し,活用するトラクタブルな計算フレームワークを提案する。
アルゴリズムであるCurvature-Aware Policy Optimization (CAPO)は、不安定な更新に寄与するサンプルを特定し、それらをマスクアウトする。
論文 参考訳(メタデータ) (2025-10-01T12:29:32Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。