論文の概要: Designing a Robust, Bounded, and Smooth Loss Function for Improved Supervised Learning
- arxiv url: http://arxiv.org/abs/2602.06858v1
- Date: Fri, 06 Feb 2026 16:46:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.492295
- Title: Designing a Robust, Bounded, and Smooth Loss Function for Improved Supervised Learning
- Title(参考訳): 改良された教師付き学習のためのロバスト・バウンド・スムース損失関数の設計
- Authors: Soumi Mahato, Lineesh M. C,
- Abstract要約: 我々は,高次元・外界感度のデータセットを扱うために,頑健で有界で滑らかなロス関数(RoBoS-NN)を開発した。
我々は,ニューラルネットワーク(NN)のフレームワークにRoboS-NNロスを実装し,時系列を予測し,$mathcalL_textRoBoS$-NNというロバストなアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The loss function is crucial to machine learning, especially in supervised learning frameworks. It is a fundamental component that controls the behavior and general efficacy of learning algorithms. However, despite their widespread use, traditional loss functions have significant drawbacks when dealing with high-dimensional and outlier-sensitive datasets, which frequently results in reduced performance and slower convergence during training. In this work, we develop a robust, bounded, and smooth (RoBoS-NN) loss function to resolve the aforementioned hindrances. The generalization ability of the loss function has also been theoretically analyzed to rigorously justify its robustness. Moreover, we implement RoboS-NN loss in the framework of a neural network (NN) to forecast time series and present a new robust algorithm named $\mathcal{L}_{\text{RoBoS}}$-NN. To assess the potential of $\mathcal{L}_{\text{RoBoS}}$-NN, we conduct experiments on multiple real-world datasets. In addition, we infuse outliers into data sets to evaluate the performance of $\mathcal{L}_{\text{RoBoS}}$-NN in more challenging scenarios. Numerical results show that $\mathcal{L}_{\text{RoBoS}}$-NN outperforms the other benchmark models in terms of accuracy measures.
- Abstract(参考訳): 損失関数は機械学習、特に教師付き学習フレームワークにおいて重要である。
学習アルゴリズムの動作と一般的な効果を制御する基本的な構成要素である。
しかし、広く使われているにもかかわらず、従来の損失関数は、高次元および外れ値に敏感なデータセットを扱う際に大きな欠点があるため、トレーニング中にパフォーマンスが低下し、収束が遅くなる。
本研究では、上記の障害を解決するために、頑健で有界で滑らかなロス関数(RoBoS-NN)を開発する。
損失関数の一般化能力も理論的に解析され、その堅牢性を厳密に正当化している。
さらに、ニューラルネットワーク(NN)のフレームワークにRoboS-NNロスを実装し、時系列を予測し、新しいロバストアルゴリズムである$\mathcal{L}_{\text{RoboS}}$-NNを示す。
我々は,$\mathcal{L}_{\text{RoBoS}}$-NNの可能性を評価するために,複数の実世界のデータセットで実験を行う。
さらに、より困難なシナリオで$\mathcal{L}_{\text{RoBoS}}$-NNのパフォーマンスを評価するために、データセットにoutlierを注入します。
数値的な結果から、$\mathcal{L}_{\text{RoBoS}}$-NNは精度の点で他のベンチマークモデルよりも優れていることが分かる。
関連論文リスト
- Understanding the Role of Training Data in Test-Time Scaling [56.12341509545198]
線形回帰のための文脈内重み予測タスクを訓練した変圧器の試験時間スケーリング性能について検討した。
多様な、関連性があり、難しいタスクセットでのトレーニングが、テスト時間のスケーリングに最高のパフォーマンスをもたらすことを示す。
論文 参考訳(メタデータ) (2025-10-04T01:38:48Z) - RoBoSS: A Robust, Bounded, Sparse, and Smooth Loss Function for
Supervised Learning [0.0]
そこで本研究では,教師あり学習のための,頑健で,有界で,スパースで,スムーズなロス関数(RoBoSS)を提案する。
未確認データの一般化のために,$mathcalL_rbss$-SVMという新しいロバストアルゴリズムを導入する。
提案した$mathcalL_rbss$-SVM を実世界の UCI と KEEL のデータセットで18ドルで評価した。
論文 参考訳(メタデータ) (2023-09-05T13:59:50Z) - Alternate Loss Functions for Classification and Robust Regression Can Improve the Accuracy of Artificial Neural Networks [6.452225158891343]
本稿では,ニューラルネットワークのトレーニング速度と最終的な精度が,ニューラルネットワークのトレーニングに使用する損失関数に大きく依存することを示す。
様々なベンチマークタスクの性能を著しく向上させる2つの新しい分類損失関数を提案する。
論文 参考訳(メタデータ) (2023-03-17T12:52:06Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - $\sigma^2$R Loss: a Weighted Loss by Multiplicative Factors using
Sigmoidal Functions [0.9569316316728905]
我々は,二乗還元損失(sigma2$R損失)と呼ばれる新たな損失関数を導入する。
我々の損失は明らかな直観と幾何学的解釈を持ち、我々の提案の有効性を実験によって実証する。
論文 参考訳(メタデータ) (2020-09-18T12:34:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。