論文の概要: The Double-Edged Sword of Data-Driven Super-Resolution: Adversarial Super-Resolution Models
- arxiv url: http://arxiv.org/abs/2602.07251v1
- Date: Fri, 06 Feb 2026 23:00:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.527022
- Title: The Double-Edged Sword of Data-Driven Super-Resolution: Adversarial Super-Resolution Models
- Title(参考訳): データ駆動型超解法のダブルエッジソード:逆超解法モデル
- Authors: Haley Duba-Sullivan, Steven R. Young, Emma J. Reid,
- Abstract要約: 本稿では,学習中のSRモデルの重みに直接,敵対行動を直接埋め込むことができることを示すフレームワークであるAdvSRを提案する。
AdvSRは、復元品質とターゲットとなる敵の成果を共同で最適化することにより、標準的な画像品質指標の下で良さそうなモデルを生成する。
これらの発見は、画像パイプラインに対する新たなモデルレベルの脅威を浮き彫りにした。
- 参考スコア(独自算出の注目度): 0.8921166277011348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven super-resolution (SR) methods are often integrated into imaging pipelines as preprocessing steps to improve downstream tasks such as classification and detection. However, these SR models introduce a previously unexplored attack surface into imaging pipelines. In this paper, we present AdvSR, a framework demonstrating that adversarial behavior can be embedded directly into SR model weights during training, requiring no access to inputs at inference time. Unlike prior attacks that perturb inputs or rely on backdoor triggers, AdvSR operates entirely at the model level. By jointly optimizing for reconstruction quality and targeted adversarial outcomes, AdvSR produces models that appear benign under standard image quality metrics while inducing downstream misclassification. We evaluate AdvSR on three SR architectures (SRCNN, EDSR, SwinIR) paired with a YOLOv11 classifier and demonstrate that AdvSR models can achieve high attack success rates with minimal quality degradation. These findings highlight a new model-level threat for imaging pipelines, with implications for how practitioners source and validate models in safety-critical applications.
- Abstract(参考訳): データ駆動型超解像(SR)法は、分類や検出などの下流タスクを改善するための前処理ステップとして、画像パイプラインに統合されることが多い。
しかし、これらのSRモデルは、これまで探索されていなかった攻撃面を撮像パイプラインに導入する。
本稿では,学習中のSRモデルの重みに直接対向動作を組み込むことができ,推論時に入力にアクセスする必要がないことを実証するフレームワークであるAdvSRを提案する。
インプットの摂動やバックドアのトリガーに依存する以前の攻撃とは異なり、AdvSRはモデルレベルで完全に動作する。
AdvSRは、復元品質とターゲットとなる敵の成果を共同で最適化することで、下流の誤分類を誘導しながら、標準画質の指標の下で良質に見えるモデルを生成する。
我々は, YOLOv11分類器と組み合わせた3つのSRアーキテクチャ(SRCNN, EDSR, SwinIR)上でAdvSRを評価し, 最小品質の劣化でAdvSRモデルが高い攻撃成功率を達成できることを実証した。
これらの発見は、画像パイプラインに対する新たなモデルレベルの脅威を浮き彫りにした。
関連論文リスト
- Dual-domain Adaptation Networks for Realistic Image Super-resolution [81.34345637776408]
現実画像超解像(SR)は、現実世界の低解像度(LR)画像を高解像度(HR)画像に変換することに焦点を当てている。
現在の手法は、限られた現実世界のLR-HRデータと競合し、基本的な画像特徴の学習に影響を及ぼす。
我々は、シミュレーションされた画像SRモデルを実世界のデータセットに効率よく適応できる新しいアプローチを提案する。
論文 参考訳(メタデータ) (2025-11-21T12:57:23Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - Exploiting Self-Supervised Constraints in Image Super-Resolution [72.35265021054471]
本稿では,SSC-SRと呼ばれる単一画像超解像のための新しい自己監督制約を提案する。
SSC-SRは、安定性を高めるために指数移動平均によって更新された二重非対称パラダイムとターゲットモデルを用いることで、画像の複雑さのばらつきに一意に対処する。
SSC-SRフレームワークはさまざまなベンチマークデータセットに対して,EDSR平均0.1dB,SwinIR平均0.06dBの大幅な拡張を実現している。
論文 参考訳(メタデータ) (2024-03-30T06:18:50Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - The Best of Both Worlds: a Framework for Combining Degradation
Prediction with High Performance Super-Resolution Networks [14.804000317612305]
本稿では,ブラインドSR予測機構とディープSRネットワークを組み合わせるためのフレームワークを提案する。
我々は、我々のハイブリッドモデルが、非盲目モデルと盲目モデルの両方よりも強いSR性能を一貫して達成していることを示す。
論文 参考訳(メタデータ) (2022-11-09T16:49:35Z) - Generalized Real-World Super-Resolution through Adversarial Robustness [107.02188934602802]
本稿では,実世界のSRに取り組むために,敵攻撃の一般化能力を活用したロバスト超解法を提案する。
我々の新しいフレームワークは、現実世界のSR手法の開発においてパラダイムシフトをもたらす。
単一のロバストモデルを使用することで、実世界のベンチマークで最先端の特殊な手法より優れています。
論文 参考訳(メタデータ) (2021-08-25T22:43:20Z) - Fine-tuning of Pre-trained End-to-end Speech Recognition with Generative
Adversarial Networks [10.723935272906461]
近年, GAN (Generative Adversarial Network) を用いたエンド・ツー・エンド(E2E) ASRシステムの対戦訓練について検討している。
GAN目標を用いた事前学習型ASRモデルの微調整のための新しいフレームワークを提案する。
提案手法は,ベースラインと従来のGANベースの対戦モデルより優れている。
論文 参考訳(メタデータ) (2021-03-10T17:40:48Z) - Unsupervised Alternating Optimization for Blind Hyperspectral Imagery
Super-resolution [40.350308926790255]
本稿では, 盲点HSI融合問題に対処するために, 盲点HSI SR法を提案する。
本稿ではまず,デジェネレーションモデルを推定し,遅延画像の再構成を行うために,逐次最適化に基づく深層フレームワークを提案する。
そして,ネットワークを事前学習するメタラーニングに基づく機構が提案され,ネットワークの速度と一般化能力を効果的に向上させることができる。
論文 参考訳(メタデータ) (2020-12-03T07:52:32Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。