論文の概要: 3D Transport-based Morphometry (3D-TBM) for medical image analysis
- arxiv url: http://arxiv.org/abs/2602.07260v1
- Date: Fri, 06 Feb 2026 23:20:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.532429
- Title: 3D Transport-based Morphometry (3D-TBM) for medical image analysis
- Title(参考訳): 医用画像解析のための3次元移動型形態計測(3D-TBM)
- Authors: Hongyu Kan, Kristofor Pas, Ivan Medri, Naqib Sad Pathan, Natasha Ironside, Shinjini Kundu, Jingjia He, Gustavo Kunde Rohde,
- Abstract要約: 移動型形態計測(TBM)は3次元医用画像解析の新しい枠組みとして登場した。
3D-TBMは3次元医用画像の形態解析のためのツールである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transport-Based Morphometry (TBM) has emerged as a new framework for 3D medical image analysis. By embedding images into a transport domain via invertible transformations, TBM facilitates effective classification, regression, and other tasks using transport-domain features. Crucially, the inverse mapping enables the projection of analytic results back into the original image space, allowing researchers to directly interpret clinical features associated with model outputs in a spatially meaningful way. To facilitate broader adoption of TBM in clinical imaging research, we present 3D-TBM, a tool designed for morphological analysis of 3D medical images. The framework includes data preprocessing, computation of optimal transport embeddings, and analytical methods such as visualization of main transport directions, together with techniques for discerning discriminating directions and related analysis methods. We also provide comprehensive documentation and practical tutorials to support researchers interested in applying 3D-TBM in their own medical imaging studies. The source code is publicly available through PyTransKit.
- Abstract(参考訳): 移動型形態計測(TBM)は3次元医用画像解析の新しい枠組みとして登場した。
イメージを可逆変換を通じてトランスポートドメインに埋め込むことで、TBMはトランスポートドメインの機能を使用して効果的な分類、回帰、その他のタスクを促進する。
重要なことに、逆マッピングは分析結果を元の画像空間に投影し、研究者が空間的に意味のある方法でモデル出力に関連する臨床的特徴を直接解釈することを可能にする。
臨床画像研究におけるTBMの広範な採用を促進するため,3次元医用画像の形態解析を目的とした3D-TBMを提案する。
このフレームワークは、データ前処理、最適輸送埋め込みの計算、主輸送方向の可視化などの分析方法、および識別方向と関連する分析方法の識別技術を含む。
また,医用画像研究に3D-TBMを応用することに関心のある研究者を支援するため,包括的ドキュメンテーションや実践的チュートリアルも提供する。
ソースコードはPyTransKitを通じて公開されている。
関連論文リスト
- M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Models [49.5030774873328]
これまでの研究は主に2Dの医療画像に焦点を合わせてきた。
120K画像テキスト対と62K命令応答対からなる大規模3次元マルチモーダル医療データセットM3D-Dataを提案する。
また,新しい3次元マルチモーダル・メディカル・ベンチマークであるM3D-Benchを導入し,8つのタスクにまたがる自動評価を容易にする。
論文 参考訳(メタデータ) (2024-03-31T06:55:12Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - AutoCT: Automated CT registration, segmentation, and quantification [0.5461938536945721]
本稿では, エンドツーエンドの自動前処理, 登録, セグメンテーション, 3次元CTスキャンの定量的解析を統合した包括的パイプラインを提案する。
エンジニアリングされたパイプラインは、アトラスベースのCTセグメンテーションと定量化を可能にする。
軽量でポータブルなソフトウェアプラットフォーム上で、AutoCTは、人工知能駆動アプリケーションのデプロイを支えるために、CTイメージングコミュニティのための新しいツールキットを提供する。
論文 参考訳(メタデータ) (2023-10-26T21:09:47Z) - Adapting Pre-trained Vision Transformers from 2D to 3D through Weight
Inflation Improves Medical Image Segmentation [19.693778706169752]
我々は2Dから3Dに事前訓練されたトランスフォーマーを適応させるために重量インフレーション戦略を使用し、トランスファーラーニングと深度情報の両方の利点を維持している。
提案手法は,幅広い3次元医用画像データセットを対象とした最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-02-08T19:38:13Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Cross Modality 3D Navigation Using Reinforcement Learning and Neural
Style Transfer [3.0152753984876854]
本稿では,MARL(Multi-Agent Reinforcement Learning)を用いて,医用画像から3次元解剖学的ボリュームのナビゲーションを行う。
我々はニューラルスタイルトランスファーを用いて,合成CT(Computed Tomography)エージェントジム環境を作成する。
我々のフレームワークはラベル付き臨床データを一切必要とせず、複数の画像翻訳技術と容易に統合できる。
論文 参考訳(メタデータ) (2021-11-05T13:11:45Z) - Medical Image Segmentation using 3D Convolutional Neural Networks: A
Review [25.864941088823343]
コンピュータ支援医療画像解析は,専門医の専門的臨床診断を支援し,適切な治療計画を決定する上で重要な役割を担っている。
現在、畳み込みニューラルネットワーク(CNN)が医療画像解析に好まれている。
3Dイメージングシステムの急速な進歩と優れたハードウェアとソフトウェアのサポートの可用性により、医用画像解析において3D深層学習法が人気を集めている。
論文 参考訳(メタデータ) (2021-08-19T03:23:08Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
既存の3Dベースの手法は、トレーニング済みのモデルを下流のタスクに転送している。
彼らは3D医療イメージングのためのモデルを訓練するために大量のパラメータを要求します。
本稿では,2次元画像スライス形式で3次元容積画像を効果的にモデル化する,メディカルトランスフォーマーと呼ばれる新しい伝達学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-28T08:34:21Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。