論文の概要: Secure Code Generation via Online Reinforcement Learning with Vulnerability Reward Model
- arxiv url: http://arxiv.org/abs/2602.07422v1
- Date: Sat, 07 Feb 2026 07:42:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.613965
- Title: Secure Code Generation via Online Reinforcement Learning with Vulnerability Reward Model
- Title(参考訳): 脆弱性リワードモデルを用いたオンライン強化学習によるセキュアコード生成
- Authors: Tianyi Wu, Mingzhe Du, Yue Liu, Chengran Yang, Terry Yue Zhuo, Jiaheng Zhang, See-Kiong Ng,
- Abstract要約: 大規模言語モデル(LLM)は、ソフトウェア開発でますます使われているが、安全でないコードを生成する傾向は、現実世界のデプロイメントにとって大きな障壁である。
機能保存型セキュアコード生成のためのオンライン強化学習フレームワークSecCoderXを提案する。
- 参考スコア(独自算出の注目度): 60.60587869092729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly used in software development, yet their tendency to generate insecure code remains a major barrier to real-world deployment. Existing secure code alignment methods often suffer from a functionality--security paradox, improving security at the cost of substantial utility degradation. We propose SecCoderX, an online reinforcement learning framework for functionality-preserving secure code generation. SecCoderX first bridges vulnerability detection and secure code generation by repurposing mature detection resources in two ways: (i) synthesizing diverse, reality-grounded vulnerability-inducing coding tasks for online RL rollouts, and (ii) training a reasoning-based vulnerability reward model that provides scalable and reliable security supervision. Together, these components are unified in an online RL loop to align code LLMs to generate secure and functional code. Extensive experiments demonstrate that SecCoderX achieves state-of-the-art performance, improving Effective Safety Rate (ESR) by approximately 10% over unaligned models, whereas prior methods often degrade ESR by 14-54%. We release our code, dataset and model checkpoints at https://github.com/AndrewWTY/SecCoderX.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ソフトウェア開発でますます使われているが、安全でないコードを生成する傾向は、現実世界のデプロイメントにとって大きな障壁である。
既存のセキュアなコードアライメントメソッドは、しばしば機能-セキュリティパラドックスに悩まされる。
機能保存型セキュアコード生成のためのオンライン強化学習フレームワークSecCoderXを提案する。
SecCoderXは、成熟した検出リソースを2つの方法で再利用することで、脆弱性検出とセキュアなコード生成を橋渡しする。
(i)オンラインRLロールアウトのための多種多様な現実的な脆弱性誘発コーディングタスクの合成
(2)スケーラブルで信頼性の高いセキュリティ監視を提供する推論に基づく脆弱性報酬モデルのトレーニング。
これらのコンポーネントはオンラインのRLループに統合され、LLMをアライメントしてセキュアで機能的なコードを生成する。
大規模な実験では、SecCoderXは最先端のパフォーマンスを達成し、非整合モデルよりも有効安全率(ESR)を約10%向上する一方、以前の手法ではESRを14~54%低下させることが多い。
コード、データセット、モデルチェックポイントはhttps://github.com/AndrewWTY/SecCoderX.orgで公開しています。
関連論文リスト
- RealSec-bench: A Benchmark for Evaluating Secure Code Generation in Real-World Repositories [58.32028251925354]
LLM(Large Language Models)は、コード生成において顕著な能力を示しているが、セキュアなコードを生成する能力は依然として重要で、未調査の領域である。
我々はRealSec-benchを紹介します。RealSec-benchは、現実世界の高リスクなJavaリポジトリから慎重に構築されたセキュアなコード生成のための新しいベンチマークです。
論文 参考訳(メタデータ) (2026-01-30T08:29:01Z) - Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
マルチモーダル大規模言語モデル(MLLM)のセキュリティを高めるために,Secure Tug-of-War(SecTOW)を提案する。
SecTOWは2つのモジュールで構成される:ディフェンダーと補助攻撃者。どちらも強化学習(GRPO)を使用して反復的に訓練される。
SecTOWは、一般的な性能を維持しながら、セキュリティを大幅に改善することを示す。
論文 参考訳(メタデータ) (2025-07-29T17:39:48Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
大規模言語モデル(LLM)は、コード生成とコード修復に大きな進歩をもたらした。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を必然的に伝播するリスクを増大させる。
我々は,コードLLMのセキュリティ面を正確に評価し,拡張することを目的とした総合的研究を提案する。
論文 参考訳(メタデータ) (2024-07-02T16:13:21Z) - Code Security Vulnerability Repair Using Reinforcement Learning with
Large Language Models [1.5457286059556397]
大規模言語モデル(LLM)から生成されたコードのセキュリティ強化と強化のための強化学習に基づく手法を提案する。
本研究では,コードにセキュリティと機能的対策を加えることに集中する意味的報酬機構と統語的報酬機構を組み合わせることで,プログラム固有の修復を行うための強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-13T10:19:26Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
我々は,大規模な言語モデルであるCodeGen2を利用した多目的コード脆弱性解析システム texttSecRepair を導入する。
そこで本研究では,LLMを用いた脆弱性解析に適した命令ベースデータセットを提案する。
GitHub上の6つのオープンソースIoTオペレーティングシステムにおいて、ゼロデイとNデイの脆弱性を特定します。
論文 参考訳(メタデータ) (2024-01-07T02:46:39Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。