論文の概要: GRAFT: Decoupling Ranking and Calibration for Survival Analysis
- arxiv url: http://arxiv.org/abs/2602.07884v1
- Date: Sun, 08 Feb 2026 09:32:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.848418
- Title: GRAFT: Decoupling Ranking and Calibration for Survival Analysis
- Title(参考訳): GRAFT:サバイバル分析のためのランクとキャリブレーションの分離
- Authors: Mohammad Ashhad, Robert Hoehndorf, Ricardo Henao,
- Abstract要約: GRAFT(英語版)は、校正から予後を分離する新しい AFT モデルである。
GRAFTのハイブリッドアーキテクチャは、線形AFTモデルと非線形残留ニューラルネットワークを組み合わせるとともに、自動的なエンドツーエンドの特徴選択のためのゲートを統合する。
公的なベンチマークでは、GRAFTは差別とキャリブレーションにおいてベースラインよりも優れ、高ノイズ環境では頑丈でスパースである。
- 参考スコア(独自算出の注目度): 12.400774220062303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis is complicated by censored data, high-dimensional features, and non-linear interactions. Classical models are interpretable but restrictive, while deep learning models are flexible but often non-interpretable and sensitive to noise. We propose GRAFT (Gated Residual Accelerated Failure Time), a novel AFT model that decouples prognostic ranking from calibration. GRAFT's hybrid architecture combines a linear AFT model with a non-linear residual neural network, and it also integrates stochastic gates for automatic, end-to-end feature selection. The model is trained by directly optimizing a differentiable, C-index-aligned ranking loss using stochastic conditional imputation from local Kaplan-Meier estimators. In public benchmarks, GRAFT outperforms baselines in discrimination and calibration, while remaining robust and sparse in high-noise settings.
- Abstract(参考訳): 生存分析は、検閲されたデータ、高次元の特徴、非線形相互作用によって複雑である。
古典的なモデルは解釈可能だが制限的であり、ディープラーニングモデルは柔軟だが、しばしば解釈不能でノイズに敏感である。
本稿では,GRAFT(Gated Residual Accelerated Failure Time)を提案する。
GRAFTのハイブリッドアーキテクチャは、線形AFTモデルと非線形残差ニューラルネットワークを組み合わせるとともに、自動的なエンドツーエンドの特徴選択のための確率ゲートを統合する。
このモデルは、局所Kaplan-Meier推定器の確率的条件計算を用いて、微分可能なC-インデックス整列ランキング損失を直接最適化することで訓練される。
公開ベンチマークでは、GRAFTは差別とキャリブレーションにおいてベースラインよりも優れ、高ノイズ環境では頑健で疎外である。
関連論文リスト
- Adaptive Nonlinear Vector Autoregression: Robust Forecasting for Noisy Chaotic Time Series [0.0]
ベクトル自己回帰と貯水池計算は カオス力学系の予測において 有望であることを示している
遅延埋め込み線形入力と浅い学習可能な多層パーセプトロンによって生成される特徴を組み合わせた適応的Nモデルを提案する。
論文 参考訳(メタデータ) (2025-07-11T16:40:10Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification [0.0]
本稿では、SIGTRONと呼ばれる新しいパラメータ化シグモノイドと、SIGTRON不均衡分類(SIC)モデルと呼ばれる同伴凸モデルを提案する。
従来の$pi$重み付きコスト依存学習モデルとは対照的に、SICモデルは損失関数に外部の$pi$重みを持たない。
提案したSICモデルは,データセットのバリエーションに適応可能であることを示す。
論文 参考訳(メタデータ) (2023-12-26T13:14:17Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - A Distributed Optimisation Framework Combining Natural Gradient with
Hessian-Free for Discriminative Sequence Training [16.83036203524611]
本稿では、ニューラルネットワークトレーニングのための自然勾配およびヘッセンフリー(NGHF)最適化フレームワークを提案する。
これは、自然勾配(ng)法とヘッセンフリー(hf)や他の二次法からの局所曲率情報を組み合わせた線形共役勾配(cg)アルゴリズムに依存している。
さまざまな音響モデルタイプのマルチジャンル放送データセットで実験が報告されています。
論文 参考訳(メタデータ) (2021-03-12T22:18:34Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
決定論的報酬を有する1層ニューラルネットバンディットにおいても,グローバル収束は統計的に難解であることを示す。
非線形バンディットとRLの両方に対して,オンラインモデル学習者による仮想アセンジ(Virtual Ascent with Online Model Learner)というモデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-08T12:41:56Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
本稿では,非線形微調整に匹敵する性能を実現する事前学習モデルの線形化手法を提案する。
LQFはアーキテクチャの単純な変更、損失関数、そして一般的に分類に使用される最適化で構成されている。
論文 参考訳(メタデータ) (2020-12-21T06:40:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。