論文の概要: Interpretable Dynamic Network Modeling of Tensor Time Series via Kronecker Time-Varying Graphical Lasso
- arxiv url: http://arxiv.org/abs/2602.08197v1
- Date: Mon, 09 Feb 2026 01:37:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.022297
- Title: Interpretable Dynamic Network Modeling of Tensor Time Series via Kronecker Time-Varying Graphical Lasso
- Title(参考訳): Kronecker Time-Varying Graphical Lassoによるテンソル時系列の解釈可能な動的ネットワークモデリング
- Authors: Shingo Higashiguchi, Koki Kawabata, Yasuko Matsubara, Yasushi Sakurai,
- Abstract要約: テンソル時系列をモデル化するためのKTVGL(Kronecker Time-Varying Graphical Lasso)を提案する。
提案手法はKronecker積のモード固有動的ネットワークを推定し,過剰に複雑な絡み合い構造を避ける。
本手法は計算時間が少なくとも既存の手法よりも高いエッジ推定精度を実現する。
- 参考スコア(独自算出の注目度): 16.339394922532286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of web services, large amounts of time series data are generated and accumulated across various domains such as finance, healthcare, and online platforms. As such data often co-evolves with multiple variables interacting with each other, estimating the time-varying dependencies between variables (i.e., the dynamic network structure) has become crucial for accurate modeling. However, real-world data is often represented as tensor time series with multiple modes, resulting in large, entangled networks that are hard to interpret and computationally intensive to estimate. In this paper, we propose Kronecker Time-Varying Graphical Lasso (KTVGL), a method designed for modeling tensor time series. Our approach estimates mode-specific dynamic networks in a Kronecker product form, thereby avoiding overly complex entangled structures and producing interpretable modeling results. Moreover, the partitioned network structure prevents the exponential growth of computational time with data dimension. In addition, our method can be extended to stream algorithms, making the computational time independent of the sequence length. Experiments on synthetic data show that the proposed method achieves higher edge estimation accuracy than existing methods while requiring less computation time. To further demonstrate its practical value, we also present a case study using real-world data. Our source code and datasets are available at https://github.com/Higashiguchi-Shingo/KTVGL.
- Abstract(参考訳): Web サービスの急速な発展に伴い,金融,医療,オンラインプラットフォームなど,さまざまな領域で大量の時系列データが生成,蓄積される。
このようなデータは、互いに相互作用する複数の変数と共進化することが多いため、変数間の時間変化の依存関係(動的ネットワーク構造)を推定することは、正確なモデリングにおいて重要である。
しかし、実世界のデータは、しばしば複数のモードを持つテンソル時系列として表現され、その結果、大きな絡み合ったネットワークが、解釈が難しく、計算的に見積もることが難しい。
本稿では,テンソル時系列をモデル化するためのKTVGL(Kronecker Time-Varying Graphical Lasso)を提案する。
提案手法は, Kronecker積のモード固有動的ネットワークを推定し, 過度に複雑な絡み合い構造を回避し, 解釈可能なモデリング結果を生成する。
さらに、分割されたネットワーク構造は、データ次元による計算時間の指数的な増加を防ぐ。
さらに,提案手法をストリームアルゴリズムに拡張することで,列長に依存しない計算時間を実現する。
合成データを用いた実験により,提案手法は計算時間が少なく,既存の手法よりも高いエッジ推定精度が得られることが示された。
さらにその実用的価値を示すために,実世界のデータを用いたケーススタディを提案する。
ソースコードとデータセットはhttps://github.com/Higashiguchi-Shingo/KTVGLで公開されています。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Time-Parameterized Convolutional Neural Networks for Irregularly Sampled
Time Series [26.77596449192451]
不規則にサンプリングされた時系列は、いくつかのアプリケーション領域でユビキタスであり、スパースであり、完全に観測されていない、非整合的な観察に繋がる。
標準シーケンシャルニューラルネットワーク(RNN)と畳み込みニューラルネットワーク(CNN)は、観測時間間の定期的な間隔を考慮し、不規則な時系列モデリングに重大な課題を提起する。
時間的に不規則なカーネルを用いて畳み込み層をパラメータ化する。
論文 参考訳(メタデータ) (2023-08-06T21:10:30Z) - TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting [20.03223916749058]
時系列予測は、科学と工学における重要な現実世界の応用の核心にある。
動的時間グラフ表現を学習するTimeGNNを提案する。
TimeGNNは、他の最先端のグラフベースの手法よりも4倍から80倍高速な推論時間を実現している。
論文 参考訳(メタデータ) (2023-07-27T08:10:19Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
論文 参考訳(メタデータ) (2023-06-06T16:24:27Z) - Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
隠れ状態の時間的発達を表すためにニューラルODEを用いるRNN-ODE-Adapと呼ばれるRNNベースのモデルを提案する。
我々は、データの変化の急激さに基づいて時間ステップを適応的に選択し、「スパイクのような」時系列に対してより効率的にモデルを訓練する。
論文 参考訳(メタデータ) (2023-06-02T16:46:47Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
イベントシーケンスは不均一でスパースであり、従来のモデルは不適当である。
我々は、時間とともに一様でない事象の発生を処理するために設計された効率的な畳み込みニューラルネットワークに基づくCOTICを提案する。
COTICは、次のイベント時間とタイプを予測する際に既存のモデルよりも優れており、最も近いライバルの3.714と比較して平均1.5のランクに達している。
論文 参考訳(メタデータ) (2023-02-13T10:34:51Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。