論文の概要: Understanding and Optimizing Attention-Based Sparse Matching for Diverse Local Features
- arxiv url: http://arxiv.org/abs/2602.08430v1
- Date: Mon, 09 Feb 2026 09:39:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.151245
- Title: Understanding and Optimizing Attention-Based Sparse Matching for Diverse Local Features
- Title(参考訳): 多様な局所特徴に対する注意に基づくスパースマッチングの理解と最適化
- Authors: Qiang Wang,
- Abstract要約: 各種特徴量に対する注意に基づくスパース画像マッチングモデルの訓練の問題点を再考する。
まず、これまで見過ごされてきた重要な設計選択の1つを特定し、LightGlueモデルの性能に大きな影響を与えます。
次に、トランスをベースとしたマッチングフレームワークにおける検出器とディスクリプタの役割を調査し、ディスクリプタではなく検出器が性能の違いの主な原因であることが多いことを発見した。
- 参考スコア(独自算出の注目度): 3.3488752426599206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit the problem of training attention-based sparse image matching models for various local features. We first identify one critical design choice that has been previously overlooked, which significantly impacts the performance of the LightGlue model. We then investigate the role of detectors and descriptors within the transformer-based matching framework, finding that detectors, rather than descriptors, are often the primary cause for performance difference. Finally, we propose a novel approach to fine-tune existing image matching models using keypoints from a diverse set of detectors, resulting in a universal, detector-agnostic model. When deployed as a zero-shot matcher for novel detectors, the resulting model achieves or exceeds the accuracy of models specifically trained for those features. Our findings offer valuable insights for the deployment of transformer-based matching models and the future design of local features.
- Abstract(参考訳): 各種特徴量に対する注意に基づくスパース画像マッチングモデルの訓練の問題点を再考する。
まず、これまで見過ごされてきた重要な設計選択の1つを特定し、LightGlueモデルの性能に大きな影響を与えます。
次に、トランスをベースとしたマッチングフレームワークにおける検出器とディスクリプタの役割を調査し、ディスクリプタではなく検出器が性能の違いの主な原因であることが多いことを発見した。
最後に,多種多様な検出器のキーポイントを用いて既存の画像マッチングモデルを微調整する手法を提案する。
新規検出器のためのゼロショットマッチングとしてデプロイされると、得られたモデルはそれらの特徴のために特別に訓練されたモデルの精度を達成または超える。
本研究は, トランスフォーマーを用いたマッチングモデルの展開と, 今後のローカル機能の設計について, 貴重な知見を提供するものである。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [81.93945602120453]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Exploring Robust Features for Few-Shot Object Detection in Satellite
Imagery [17.156864650143678]
従来の2段階アーキテクチャに基づく数発の物体検出器を開発した。
大規模な事前訓練モデルを使用して、クラス参照の埋め込みやプロトタイプを構築する。
課題と稀なオブジェクトを含む2つのリモートセンシングデータセットの評価を行う。
論文 参考訳(メタデータ) (2024-03-08T15:20:27Z) - ProtoP-OD: Explainable Object Detection with Prototypical Parts [0.0]
本稿では、原型的局所特徴を構築し、オブジェクト検出に使用するトランスフォーマーの検出拡張を提案する。
提案した拡張は、プロトタイプアクティベーションの離散化表現を演算するボトルネックモジュール、プロトタイプネックで構成されている。
論文 参考訳(メタデータ) (2024-02-29T13:25:15Z) - Improving Transformer-based Image Matching by Cascaded Capturing
Spatially Informative Keypoints [44.90917854990362]
変換器を用いたカスケードマッチングモデル -- Cascade Feature Matching TRansformer (CasMTR) を提案する。
我々は、信頼性マップを通じてキーポイントをフィルタリングするために、単純で効果的な非最大抑圧(NMS)後処理を使用する。
CasMTRは、室内および屋外のポーズ推定および視覚的位置推定において最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-03-06T04:32:34Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domainは、ドメインシフトとカテゴリシフトという2つのシフトを処理して、データセット間で知識を転送することを目的としている。
主な課題は、既知のクラス知識の分布をソースからターゲットに適応させながら、未知のターゲットサンプルを正しく識別することである。
既存のほとんどの手法は、まずターゲットが適応した既知の知識を訓練し、次に未知のターゲットサンプルを識別するために単一のしきい値に依存することでこの問題に対処する。
論文 参考訳(メタデータ) (2022-12-16T09:01:57Z) - Condensing Two-stage Detection with Automatic Object Key Part Discovery [87.1034745775229]
2段階の物体検出器は通常、高い精度を達成するために、検出ヘッドのために過度に大きなモデルを必要とする。
そこで本研究では,2段階検出ヘッドのモデルパラメータを,対象キー部分に集中させることで縮合・縮小できることを示す。
提案手法は、一般的な2段検出ヘッドのモデルパラメータの約50%を放棄しながら、元の性能を一貫して維持する。
論文 参考訳(メタデータ) (2020-06-10T01:20:47Z) - Distillation of neural network models for detection and description of
key points of images [0.0]
本研究の目的は,キーポイントの検出と記述のよりコンパクトなモデルを得ることである。
キーポイント検出方法をテストするための新しいデータセットと、割り当てられたキーポイントの新たな品質指標が導入された。
パラメータ数が大幅に少ない新しいモデルでは、元のモデルの精度に近い点マッチングの精度を示す。
論文 参考訳(メタデータ) (2020-05-18T18:59:35Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
数ショット学習シナリオにおけるスケールと位置ミスマッチの影響について検討する。
本稿では,複数のスケールや場所のマッチングを効果的に行うための,空間認識型マッチング手法を提案する。
論文 参考訳(メタデータ) (2020-01-06T14:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。