論文の概要: Modeling Score Approximation Errors in Diffusion Models via Forward SPDEs
- arxiv url: http://arxiv.org/abs/2602.08579v1
- Date: Mon, 09 Feb 2026 12:17:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.218863
- Title: Modeling Score Approximation Errors in Diffusion Models via Forward SPDEs
- Title(参考訳): 前向きSPDEによる拡散モデルにおけるスコア近似誤差のモデル化
- Authors: Junsu Seo,
- Abstract要約: 本研究では,Fokker-Planck方程式を駆動する音源としてスコア推定誤差を扱い,スコアベース生成モデル(SGM)のダイナミクスについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the dynamics of Score-based Generative Models (SGMs) by treating the score estimation error as a stochastic source driving the Fokker-Planck equation. Departing from particle-centric SDE analyses, we employ an SPDE framework to model the evolution of the probability density field under stochastic drift perturbations. Under a simplified setting, we utilize this framework to interpret the robustness of generative models through the lens of geometric stability and displacement convexity. Furthermore, we introduce a candidate evaluation metric derived from the quadratic variation of the SPDE solution projected onto a radial test function. Preliminary observations suggest that this metric remains effective using only the initial 10% of the sampling trajectory, indicating a potential for computational efficiency.
- Abstract(参考訳): 本研究では,Fokker-Planck方程式を駆動する確率的音源としてスコア推定誤差を扱い,スコアベース生成モデル(SGM)のダイナミクスについて検討した。
粒子中心SDE解析とは別に、確率的ドリフト摂動下での確率密度場の進化をモデル化するためのSPDEフレームワークを用いる。
簡単な設定で、この枠組みを用いて、幾何安定性と変位凸性のレンズを通して生成モデルのロバスト性を解釈する。
さらに、放射状試験関数に投影されたSPDE溶液の2次変動から導かれる候補評価指標を提案する。
予備的な観測は、この計量はサンプリング軌道の初期10%のみを用いて有効であり、計算効率のポテンシャルを示していることを示唆している。
関連論文リスト
- NETS: A Non-Equilibrium Transport Sampler [15.58993313831079]
我々は、Non-Equilibrium Transport Sampler (NETS)と呼ばれるアルゴリズムを提案する。
NETSはJarzynskiの平等に基づいて、重要サンプリング(AIS)の亜種と見なすことができる。
このドリフトは、様々な目的関数の最小化であり、全て偏りのない方法で推定できることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:35:38Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Understanding Diffusion Models by Feynman's Path Integral [2.4373900721120285]
ファインマン積分経路を用いた拡散モデルの新しい定式化を導入する。
この定式化はスコアベース生成モデルの包括的記述を提供する。
また、後方微分方程式と損失関数の導出を示す。
論文 参考訳(メタデータ) (2024-03-17T16:24:29Z) - Closing the ODE-SDE gap in score-based diffusion models through the
Fokker-Planck equation [0.562479170374811]
スコアベース拡散モデルのトレーニング時に生じる力学と近似の範囲を厳密に記述する。
従来のスコアベース拡散モデルでは, ODE-とSDE-誘導分布に有意な差が認められることを示す。
論文 参考訳(メタデータ) (2023-11-27T16:44:50Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Moment evolution equations and moment matching for stochastic image
EPDiff [68.97335984455059]
画像変形モデルにより、画像領域を変形させることにより、時間連続的な画像変換の研究が可能になる。
応用例としては、人口傾向とランダムな被写体特定変異の両方を用いた医療画像分析がある。
パラメータフルモデルにおける統計的推測のための推定器を構築するために、対応する伊藤拡散のモーメント近似を用いる。
論文 参考訳(メタデータ) (2021-10-07T11:08:11Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。