論文の概要: Adaptive Sampling for Private Worst-Case Group Optimization
- arxiv url: http://arxiv.org/abs/2602.10820v1
- Date: Wed, 11 Feb 2026 13:02:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:01.916793
- Title: Adaptive Sampling for Private Worst-Case Group Optimization
- Title(参考訳): プライベート・ワースト・ケース群最適化のための適応サンプリング
- Authors: Max Cairney-Leeming, Amartya Sanyal, Christoph H. Lampert,
- Abstract要約: そこで本研究では,ASCと呼ばれるグループ最適化アルゴリズムを提案する。
各グループのサンプリングレートとクリッピング閾値の両方を適応的に制御する。
その結果、全体的な平均精度を犠牲にすることなく、低分散勾配、プライバシー保証の厳格化、最悪のグループ精度が大幅に向上する。
- 参考スコア(独自算出の注目度): 29.021524910413373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models trained by minimizing the average loss often fail to be accurate on small or hard-to-learn groups of the data. Various methods address this issue by optimizing a weighted objective that focuses on the worst-performing groups. However, this approach becomes problematic when learning with differential privacy, as unequal data weighting can result in inhomogeneous privacy guarantees, in particular weaker privacy for minority groups. In this work, we introduce a new algorithm for differentially private worst-case group optimization called ASC (Adaptively Sampled and Clipped Worst-case Group Optimization). It adaptively controls both the sampling rate and the clipping threshold of each group. Thereby, it allows for harder-to-learn groups to be sampled more often while ensuring consistent privacy guarantees across all groups. Comparing ASC to prior work, we show that it results in lower-variance gradients, tighter privacy guarantees, and substantially higher worst-case group accuracy without sacrificing overall average accuracy.
- Abstract(参考訳): 平均損失を最小限に抑えることで訓練されたモデルは、データの小さなグループや難解なグループでは正確でないことが多い。
様々な手法が、最悪のパフォーマンスグループに焦点を当てた重み付け目標を最適化することでこの問題に対処している。
しかし、不均一なデータの重み付けが不均一なプライバシー保証、特に少数派のプライバシーの弱さをもたらすため、差分プライバシーで学習する場合、このアプローチは問題となる。
本研究では,ASC (Adaptively Sampled and Clipped Worst-case Group Optimization) と呼ばれる,個人別最悪のグループ最適化のための新しいアルゴリズムを提案する。
各グループのサンプリングレートとクリッピング閾値の両方を適応的に制御する。
これにより、より学習の難しいグループがより頻繁にサンプリングされ、すべてのグループに一貫したプライバシー保証が保証される。
ASCを先行作業と比較すると,全体の平均精度を犠牲にすることなく,低分散勾配,プライバシー保証の厳格化,最悪のグループ精度が著しく向上することがわかった。
関連論文リスト
- Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness [61.45587642780908]
画像テキスト基礎モデルのパラメータ効率向上のための3段階のアプローチを提案する。
本手法は, マイノリティ標本同定とロバストトレーニングアルゴリズムの2つの重要な要素を改良する。
我々の理論分析は,PPAが少数群の識別を向上し,バランスの取れたグループエラーを最小限に抑えるためにベイズが最適であることを示している。
論文 参考訳(メタデータ) (2025-03-12T15:46:12Z) - Group Robust Preference Optimization in Reward-free RLHF [23.622835830345725]
そこで本研究では,大規模言語モデルと各グループの嗜好を密に整合させる新しいグループロバスト選好最適化法を提案する。
これを達成するため、GRPOは異なるグループの重要性を適応的かつ順次重み付けし、累積損失が悪化したグループを優先順位付けする。
我々は,最悪のパフォーマンス群の性能向上,グループ間の損失不均衡の低減,確率精度の向上について検討した。
論文 参考訳(メタデータ) (2024-05-30T17:50:04Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
本稿では,新しい2段階学習アルゴリズムであるBAMを提案する。
第1段階では、各トレーニングサンプルに対して学習可能な補助変数を導入することにより、バイアス増幅方式を用いてモデルを訓練する。
第2段階では、バイアス増幅モデルが誤分類したサンプルを重み付けし、その後、再重み付けされたデータセット上で同じモデルをトレーニングし続けます。
論文 参考訳(メタデータ) (2023-09-13T04:40:08Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
本研究では,DRU(Discounted Rank Upweighting)と呼ばれるランキングベースのトレーニング手法を提案し,テストデータ上で強力なOOD性能を示すモデルを学習する。
いくつかの合成および実世界のデータセットの結果は、群分布シフトに頑健なモデルの選択と学習において、グループレベルの(ソフトミニマックスと異なり)アプローチの優れた能力を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-09T20:37:16Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - Just Train Twice: Improving Group Robustness without Training Group
Information [101.84574184298006]
経験的リスク最小化による標準トレーニングは、特定のグループにおける平均的かつ低い精度で高い精度を達成するモデルを生成することができる。
群分布的ロバストな最適化 (group DRO) のような、最悪のグループ精度を達成する以前のアプローチでは、トレーニングポイントごとに高価なグループアノテーションが必要である。
本稿では,複数のエポックに対して標準的なERMモデルを訓練し,第1モデルが誤分類したトレーニング例を重み付けする第2モデルを訓練する,単純な2段階のアプローチであるJTTを提案する。
論文 参考訳(メタデータ) (2021-07-19T17:52:32Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。