論文の概要: ContactGaussian-WM: Learning Physics-Grounded World Model from Videos
- arxiv url: http://arxiv.org/abs/2602.11021v1
- Date: Wed, 11 Feb 2026 16:48:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:02.204923
- Title: ContactGaussian-WM: Learning Physics-Grounded World Model from Videos
- Title(参考訳): ContactGaussian-WM:ビデオから物理を取り巻く世界モデルを学ぶ
- Authors: Meizhong Wang, Wanxin Jin, Kun Cao, Lihua Xie, Yiguang Hong,
- Abstract要約: 本研究では,複雑な物理法則をスパースやコンタクトリッチなビデオシーケンスから直接学習できる物理地上剛体世界モデルであるContactGaussian-WMを提案する。
大規模シミュレーションと実世界の評価により、ContactGaussian-WMは複雑なシナリオの学習において最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 25.368710400385392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing world models that understand complex physical interactions is essential for advancing robotic planning and simulation.However, existing methods often struggle to accurately model the environment under conditions of data scarcity and complex contact-rich dynamic motion.To address these challenges, we propose ContactGaussian-WM, a differentiable physics-grounded rigid-body world model capable of learning intricate physical laws directly from sparse and contact-rich video sequences.Our framework consists of two core components: (1) a unified Gaussian representation for both visual appearance and collision geometry, and (2) an end-to-end differentiable learning framework that differentiates through a closed-form physics engine to infer physical properties from sparse visual observations.Extensive simulations and real-world evaluations demonstrate that ContactGaussian-WM outperforms state-of-the-art methods in learning complex scenarios, exhibiting robust generalization capabilities.Furthermore, we showcase the practical utility of our framework in downstream applications, including data synthesis and real-time MPC.
- Abstract(参考訳): 複雑な物理的相互作用を理解する世界モデルの構築は, ロボット計画とシミュレーションの進展に不可欠である。しかしながら, 既存の手法では, データ不足と複雑な接触リッチな動的動作の条件下で, 環境を正確にモデル化することがしばしば困難である。これらの課題に対処するために, 本研究では, 複雑な物理法則をスパースとコンタクトリッチなビデオシーケンスから直接学習することのできる,微分可能な物理基底体世界モデルであるContactGaussian-WMを提案する。
関連論文リスト
- Mirage2Matter: A Physically Grounded Gaussian World Model from Video [87.9732484393686]
我々は、グラフィック駆動の世界モデリングおよびシミュレーションフレームワークであるSimulate Anythingを紹介する。
実世界の環境を3次元ガウススプレイティング(3DGS)による写実的シーン表現に再構築する。
次に、生成モデルを利用して、物理的に現実的な表現を復元し、精度校正ターゲットを介してシミュレーション環境に統合する。
論文 参考訳(メタデータ) (2026-01-24T07:43:57Z) - PhysRVG: Physics-Aware Unified Reinforcement Learning for Video Generative Models [100.65199317765608]
物理原理は現実的な視覚シミュレーションには基本的だが、トランスフォーマーベースのビデオ生成において重要な監視対象である。
本研究では,物理衝突ルールを高次元空間に直接適用した映像生成モデルのための物理認識強化学習パラダイムを提案する。
このパラダイムを、MDcycle(Mimicry-Discovery Cycle)と呼ばれる統合フレームワークに拡張することで、大幅な微調整を可能にします。
論文 参考訳(メタデータ) (2026-01-16T08:40:10Z) - PhysWorld: From Real Videos to World Models of Deformable Objects via Physics-Aware Demonstration Synthesis [52.905353023326306]
物理的に妥当で多様な実演を合成し、効率的な世界モデルを学ぶためのフレームワークであるPhysWorldを提案する。
実験により、PhysWorldは、最新の最先端手法、すなわちPhysTwinよりも47倍高速な推論速度を実現しつつ、競争性能を持つことが示された。
論文 参考訳(メタデータ) (2025-10-24T13:25:39Z) - Guiding Human-Object Interactions with Rich Geometry and Relations [21.528466852204627]
既存の手法では、物体の遠心点や人間に最も近い点のような単純化された物体表現に頼り、物理的に可算な運動を達成する。
ROGは、HOIに固有の関係をリッチな幾何学的詳細で表現する新しいフレームワークである。
ROGは, 合成HOIのリアリズム評価と意味的精度において, 最先端の手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-03-26T02:57:18Z) - InterMimic: Towards Universal Whole-Body Control for Physics-Based Human-Object Interactions [27.225777494300775]
このフレームワークは、単一のポリシーで、何時間も不完全なMoCapデータからしっかりと学習することができる。
実験の結果,InterMimicは複数のHOIデータセットにまたがって,現実的で多様なインタラクションを生成できることがわかった。
論文 参考訳(メタデータ) (2025-02-27T18:59:12Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体を表すCenter of Mass System (CMS)として扱う。
さらに、ガウスシムは質量や運動量保存のような明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Integrating Physics and Topology in Neural Networks for Learning Rigid Body Dynamics [6.675805308519987]
剛体力学と学習衝突相互作用をモデル化するための新しい枠組みを提案する。
そこで本研究では,物理法則を直接モデルに組み込む物理インフォームドメッセージパッシングニューラルアーキテクチャを提案する。
この研究は、様々な科学的・工学的な領域にまたがる応用において、マルチエンタリティ・ダイナミックな相互作用の課題に対処する。
論文 参考訳(メタデータ) (2024-11-18T11:03:15Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。