論文の概要: Provably Convergent Actor-Critic in Risk-averse MARL
- arxiv url: http://arxiv.org/abs/2602.12386v1
- Date: Thu, 12 Feb 2026 20:29:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-16 23:37:53.738198
- Title: Provably Convergent Actor-Critic in Risk-averse MARL
- Title(参考訳): リスク・アバースMARLにおける確率収束アクター臨界
- Authors: Yizhou Zhang, Eric Mazumdar,
- Abstract要約: リスク逆量子応答平衡(RQE)は,リスク回避と有界有理性を含む行動ゲーム理論に根ざした解である。
本稿では,高速なアクターと低速な批評家を特徴とする2段階のアクター・クライブアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 15.77454427706097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning stationary policies in infinite-horizon general-sum Markov games (MGs) remains a fundamental open problem in Multi-Agent Reinforcement Learning (MARL). While stationary strategies are preferred for their practicality, computing stationary forms of classic game-theoretic equilibria is computationally intractable -- a stark contrast to the comparative ease of solving single-agent RL or zero-sum games. To bridge this gap, we study Risk-averse Quantal response Equilibria (RQE), a solution concept rooted in behavioral game theory that incorporates risk aversion and bounded rationality. We demonstrate that RQE possesses strong regularity conditions that make it uniquely amenable to learning in MGs. We propose a novel two-timescale Actor-Critic algorithm characterized by a fast-timescale actor and a slow-timescale critic. Leveraging the regularity of RQE, we prove that this approach achieves global convergence with finite-sample guarantees. We empirically validate our algorithm in several environments to demonstrate superior convergence properties compared to risk-neutral baselines.
- Abstract(参考訳): 無限水平汎用マルコフゲーム(MG)における定常ポリシーの学習は、MARL(Multi-Agent Reinforcement Learning)における根本的なオープンな問題である。
定常戦略は実用性に好まれるが、古典的なゲーム理論均衡の定常形式は計算的に難解であり、シングルエージェントのRLやゼロサムのゲームの解き易さとは対照的である。
このギャップを埋めるために、リスク回避と有界合理性を含む行動ゲーム理論に根ざしたソリューションであるリスク-逆量子応答平衡(RQE)について検討する。
我々はRQEが強い規則性条件を持ち、MGの学習に一意に順応できることを示した。
本稿では,高速なアクターと低速な批評家を特徴とする2段階のアクター・クライブアルゴリズムを提案する。
RQEの正則性を利用すると、このアプローチが有限サンプル保証で大域収束を達成することが証明される。
我々は,リスクニュートラルベースラインよりも優れた収束特性を示すために,いくつかの環境でアルゴリズムを実証的に検証した。
関連論文リスト
- Breaking the Curse of Multiagency in Robust Multi-Agent Reinforcement Learning [37.80275600302316]
分布的にロバストなマルコフゲーム (RMG) は、MARLのロバスト性を高めるために提案されている。
悪名高いオープンな2つの課題は、不確実性の集合の定式化と、対応するRMGがマルチ緊急の呪いを克服できるかどうかである。
本研究では,行動経済学に着想を得た自然なRMGのクラスを提案し,各エージェントの不確実性セットは,環境と他のエージェントの統合行動の両方によって形成される。
論文 参考訳(メタデータ) (2024-09-30T08:09:41Z) - Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
本研究は,情報指向サンプリング(IDS)の原理に基づくマルチエージェント強化学習(MARL)のための新しいアルゴリズムの設計と解析を行う。
エピソディックな2プレーヤゼロサムMGに対して、ナッシュ平衡を学習するための3つのサンプル効率アルゴリズムを提案する。
我々は、Reg-MAIDSをマルチプレイヤー汎用MGに拡張し、ナッシュ平衡または粗相関平衡をサンプル効率良く学習できることを証明する。
論文 参考訳(メタデータ) (2024-04-30T06:48:56Z) - Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty [40.55653383218379]
本研究は,ロバストなマルコフゲーム(RMG)の学習に焦点を当てる。
ゲーム理論平衡の様々な概念の頑健な変種を学習するために,有限サンプルの複雑性を保証するサンプル効率モデルベースアルゴリズム(DRNVI)を提案する。
論文 参考訳(メタデータ) (2024-04-29T17:51:47Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
モデルに基づく関数近似を用いた平均フィールドゲーム(MFG)における強化学習のサンプル複雑性について検討した。
本稿では、モデルクラスの複雑性を特徴付けるためのより効果的な概念である部分モデルベースエルダー次元(P-MBED)を紹介する。
論文 参考訳(メタデータ) (2024-02-08T14:54:47Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
本稿では,対戦型マルチエージェントRLの最も基本的な設定,すなわち2プレーヤゼロサムマルコフゲームに焦点を当てる。
両エージェントから対称更新を施した単一ループポリシー最適化手法を提案し,この手法はエントロピー規則化楽観的乗算重み更新法(OMWU)によって更新される。
我々の収束結果は、最もよく知られた複雑性を改善し、競合するマルコフゲームにおけるポリシー最適化をよりよく理解する。
論文 参考訳(メタデータ) (2022-10-03T16:05:43Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。