論文の概要: SWING: Unlocking Implicit Graph Representations for Graph Random Features
- arxiv url: http://arxiv.org/abs/2602.12703v1
- Date: Fri, 13 Feb 2026 08:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-16 23:37:53.886545
- Title: SWING: Unlocking Implicit Graph Representations for Graph Random Features
- Title(参考訳): SWING: グラフランダム機能のための暗黙のグラフ表現のアンロック
- Authors: Alessandro Manenti, Avinava Dubey, Arijit Sehanobish, Cesare Alippi, Krzysztof Choromanski,
- Abstract要約: SWING: Space Walks for Implicit Network Graphsはグラフ上のグラフランダム特徴を含む計算アルゴリズムの新しいクラスである。
SWINGの詳細な解析を行い、様々なiグラフのクラスで徹底的な実験を行い、それを補完する。
- 参考スコア(独自算出の注目度): 57.956136773668476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose SWING: Space Walks for Implicit Network Graphs, a new class of algorithms for computations involving Graph Random Features on graphs given by implicit representations (i-graphs), where edge-weights are defined as bi-variate functions of feature vectors in the corresponding nodes. Those classes of graphs include several prominent examples, such as: $ε$-neighborhood graphs, used on regular basis in machine learning. Rather than conducting walks on graphs' nodes, those methods rely on walks in continuous spaces, in which those graphs are embedded. To accurately and efficiently approximate original combinatorial calculations, SWING applies customized Gumbel-softmax sampling mechanism with linearized kernels, obtained via random features coupled with importance sampling techniques. This algorithm is of its own interest. SWING relies on the deep connection between implicitly defined graphs and Fourier analysis, presented in this paper. SWING is accelerator-friendly and does not require input graph materialization. We provide detailed analysis of SWING and complement it with thorough experiments on different classes of i-graphs.
- Abstract(参考訳): SWING: Space Walks for Implicit Network Graphs - 暗黙の表現(iグラフ)によって与えられるグラフ上のグラフランダム特徴を含む計算アルゴリズムのクラスで、エッジウェイトは対応するノードの特徴ベクトルの2変数関数として定義される。
これらのグラフのクラスには、次のようないくつかの顕著な例が含まれている。
グラフのノードをウォークするのではなく、グラフが埋め込まれた連続空間のウォークに依存する。
SWINGは、元の組合せ計算を正確かつ効率的に近似するために、線形化されたカーネルでカスタマイズされたGumbel-softmaxサンプリング機構を適用し、重要サンプリング技術と組み合わされたランダムな特徴によって得られる。
このアルゴリズムは、それ自体が興味を持っている。
SWingは、暗黙的に定義されたグラフとフーリエ解析の間の深い関係に依存している。
SWINGはアクセルフレンドリーであり、入力グラフの実体化を必要としない。
SWINGの詳細な解析を行い、様々なiグラフのクラスで徹底的な実験を行い、それを補完する。
関連論文リスト
- Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks [4.912298804026689]
グラフは関係データを効果的に特徴付け、グラフ表現学習法を駆動する。
最近の不整合グラフ表現学習は、グラフデータの独立因子を分離することにより、解釈可能性を高める。
本稿では,この制限に対処するグラフ最適マッチングカーネル畳み込みネットワーク(GOMKCN)を提案する。
論文 参考訳(メタデータ) (2025-04-23T02:26:33Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
学習対応は、不均一な対応分布と低い不整合率で設定された初期対応から正しい対応を見つけることを目的としている。
最近の進歩は、通常、グラフニューラルネットワーク(GNN)を使用して単一のタイプのグラフを構築したり、グローバルなグラフに局所グラフをスタックしてタスクを完了させる。
本稿では,複数の補完グラフを効果的に組み合わせるためのMGNetを提案する。
論文 参考訳(メタデータ) (2024-01-10T07:58:44Z) - Graph Mixup with Soft Alignments [49.61520432554505]
本研究では,画像上での使用に成功しているミキサアップによるグラフデータの増大について検討する。
ソフトアライメントによるグラフ分類のための簡易かつ効果的な混合手法であるS-Mixupを提案する。
論文 参考訳(メタデータ) (2023-06-11T22:04:28Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Online Graph Dictionary Learning [10.394615068526505]
本論文では,Gromov Wassersteinの発散をデータフィッティング用語として用いるオンライングラフ辞書学習手法を提案する。
私たちの研究では、グラフはノードの対関係を通じてエンコードされ、グラフ原子の凸結合としてモデル化されます。
私たちのアプローチはラベル付きグラフに自然に拡張され、埋め込み空間におけるGromov Wassersteinの高速近似として使用できる新しい上界によって完了されます。
論文 参考訳(メタデータ) (2021-02-12T14:39:28Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Wasserstein Embedding for Graph Learning [33.90471037116372]
Wasserstein Embedding for Graph Learning (WEGL)は、グラフ全体をベクトル空間に埋め込むフレームワークである。
グラフ間の類似性をノード埋め込み分布間の類似性の関数として定義する上で,新たな知見を活用する。
各種ベンチマークグラフ固有性予測タスクにおける新しいグラフ埋め込み手法の評価を行った。
論文 参考訳(メタデータ) (2020-06-16T18:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。