論文の概要: Online Graph Dictionary Learning
- arxiv url: http://arxiv.org/abs/2102.06555v1
- Date: Fri, 12 Feb 2021 14:39:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 13:05:30.710072
- Title: Online Graph Dictionary Learning
- Title(参考訳): オンライングラフ辞書学習
- Authors: C\'edric Vincent-Cuaz, Titouan Vayer, R\'emi Flamary, Marco Corneli,
Nicolas Courty
- Abstract要約: 本論文では,Gromov Wassersteinの発散をデータフィッティング用語として用いるオンライングラフ辞書学習手法を提案する。
私たちの研究では、グラフはノードの対関係を通じてエンコードされ、グラフ原子の凸結合としてモデル化されます。
私たちのアプローチはラベル付きグラフに自然に拡張され、埋め込み空間におけるGromov Wassersteinの高速近似として使用できる新しい上界によって完了されます。
- 参考スコア(独自算出の注目度): 10.394615068526505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dictionary learning is a key tool for representation learning, that explains
the data as linear combination of few basic elements. Yet, this analysis is not
amenable in the context of graph learning, as graphs usually belong to
different metric spaces. We fill this gap by proposing a new online Graph
Dictionary Learning approach, which uses the Gromov Wasserstein divergence for
the data fitting term. In our work, graphs are encoded through their nodes'
pairwise relations and modeled as convex combination of graph atoms, i.e.
dictionary elements, estimated thanks to an online stochastic algorithm, which
operates on a dataset of unregistered graphs with potentially different number
of nodes. Our approach naturally extends to labeled graphs, and is completed by
a novel upper bound that can be used as a fast approximation of Gromov
Wasserstein in the embedding space. We provide numerical evidences showing the
interest of our approach for unsupervised embedding of graph datasets and for
online graph subspace estimation and tracking.
- Abstract(参考訳): 辞書学習は表現学習の鍵となるツールであり、データはほとんど基本的な要素の線形結合として説明できる。
しかし、グラフは通常異なるメトリック空間に属しているため、この分析はグラフ学習の文脈では説明できません。
このギャップを埋めるために、Gromov Wassersteinの発散をデータフィッティング用語として使用する新しいオンライングラフ辞書学習アプローチを提案します。
私たちの研究では、グラフはノードの対関係を通じてエンコードされ、グラフ原子の凸結合としてモデル化されます。
辞書要素は、潜在的に異なるノード数を持つ未登録グラフのデータセットで動作するオンライン確率アルゴリズムによって推定される。
私たちのアプローチはラベル付きグラフに自然に拡張され、埋め込み空間におけるGromov Wassersteinの高速近似として使用できる新しい上界によって完了されます。
グラフデータセットの教師なし埋め込みとオンライングラフ部分空間推定と追跡に対するアプローチの関心を示す数値的証拠を提供する。
関連論文リスト
- MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
学習対応は、不均一な対応分布と低い不整合率で設定された初期対応から正しい対応を見つけることを目的としている。
最近の進歩は、通常、グラフニューラルネットワーク(GNN)を使用して単一のタイプのグラフを構築したり、グローバルなグラフに局所グラフをスタックしてタスクを完了させる。
本稿では,複数の補完グラフを効果的に組み合わせるためのMGNetを提案する。
論文 参考訳(メタデータ) (2024-01-10T07:58:44Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
本稿では,グラフの空間ビューを対比することで,グラフデータの堅牢な表現を学習するためのマルチレベルグラフコントラスト学習(MLGCL)フレームワークを提案する。
元のグラフは1次近似構造であり、不確実性や誤りを含むが、符号化機能によって生成された$k$NNグラフは高次近接性を保持する。
MLGCLは、7つのデータセット上の既存の最先端グラフ表現学習法と比較して有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-07-06T14:24:43Z) - COLOGNE: Coordinated Local Graph Neighborhood Sampling [1.6498361958317633]
グラフノードのような個別の未順序オブジェクトを実数値ベクトルで置き換えることは、グラフデータから学ぶための多くのアプローチの中心である。
ノードベクトル表現の座標がグラフノードであるような離散ノード埋め込みを学習する問題に対処する。
これにより、ノードにもともと存在するすべての属性が保存されているため、グラフの解釈可能な機械学習アルゴリズムを設計する扉が開く。
論文 参考訳(メタデータ) (2021-02-09T11:39:06Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
グラフ隣接行列の後方分布を構築するための新しい非パラメトリックグラフモデルを提案する。
このモデルの利点を,ノード分類,リンク予測,レコメンデーションという3つの異なる問題設定で示す。
論文 参考訳(メタデータ) (2020-06-23T21:10:55Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Wasserstein Embedding for Graph Learning [33.90471037116372]
Wasserstein Embedding for Graph Learning (WEGL)は、グラフ全体をベクトル空間に埋め込むフレームワークである。
グラフ間の類似性をノード埋め込み分布間の類似性の関数として定義する上で,新たな知見を活用する。
各種ベンチマークグラフ固有性予測タスクにおける新しいグラフ埋め込み手法の評価を行った。
論文 参考訳(メタデータ) (2020-06-16T18:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。