論文の概要: FedHENet: A Frugal Federated Learning Framework for Heterogeneous Environments
- arxiv url: http://arxiv.org/abs/2602.13024v1
- Date: Fri, 13 Feb 2026 15:30:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-16 23:37:54.011511
- Title: FedHENet: A Frugal Federated Learning Framework for Heterogeneous Environments
- Title(参考訳): FedHENet: 異種環境のためのフルーガーフェデレーション学習フレームワーク
- Authors: Alejandro Dopico-Castro, Oscar Fontenla-Romero, Bertha Guijarro-Berdiñas, Amparo Alonso-Betanzos, Iván Pérez Digón,
- Abstract要約: フェデレートラーニング(FL)は、データを集中せずに協調的なトレーニングを可能にする。
ほとんどのFLアプローチは、高価で反復的なディープネットワーク最適化に依存している。
我々はFedHEONNフレームワークを画像分類に拡張するFedHENetを提案する。
- 参考スコア(独自算出の注目度): 40.69516929140388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables collaborative training without centralizing data, essential for privacy compliance in real-world scenarios involving sensitive visual information. Most FL approaches rely on expensive, iterative deep network optimization, which still risks privacy via shared gradients. In this work, we propose FedHENet, extending the FedHEONN framework to image classification. By using a fixed, pre-trained feature extractor and learning only a single output layer, we avoid costly local fine-tuning. This layer is learned by analytically aggregating client knowledge in a single round of communication using homomorphic encryption (HE). Experiments show that FedHENet achieves competitive accuracy compared to iterative FL baselines while demonstrating superior stability performance and up to 70\% better energy efficiency. Crucially, our method is hyperparameter-free, removing the carbon footprint associated with hyperparameter tuning in standard FL. Code available in https://github.com/AlejandroDopico2/FedHENet/
- Abstract(参考訳): Federated Learning(FL)は、機密情報を含む現実のシナリオにおいて、プライバシコンプライアンスに不可欠な、データを集中化せずに協調的なトレーニングを可能にする。
ほとんどのFLアプローチは高価で反復的なディープネットワーク最適化に依存している。
本稿では,FedHEONNフレームワークを画像分類に拡張したFedHENetを提案する。
固定された事前学習された特徴抽出器を用いて1つの出力層のみを学習することにより、コストのかかる局所的な微調整を回避することができる。
このレイヤは、ホモモルフィック暗号化(HE)を使用して単一の通信ラウンドでクライアントの知識を解析的に集約することで学習される。
実験の結果,FedHENetは繰り返しFLベースラインと比較して競争精度が向上し,安定性が向上し,エネルギー効率が最大70%向上した。
重要なことは,本手法はハイパーパラメータフリーであり,標準FLのハイパーパラメータチューニングに伴う炭素フットプリントを除去する。
https://github.com/AlejandroDopico2/FedHENet/
関連論文リスト
- Providing Differential Privacy for Federated Learning Over Wireless: A Cross-layer Framework [19.381425127772054]
Federated Learning(FL)は、エッジデバイスがローカルなトレーニングデータを維持することができる分散機械学習フレームワークである。
本稿では,分散化された動的電力制御により差分プライバシ(DP)を改善するOTA-FLの無線物理層(PHY)設計を提案する。
この適応は、異なる学習アルゴリズム間で設計の柔軟性と有効性を示しながら、プライバシに強く重点を置いています。
論文 参考訳(メタデータ) (2024-12-05T18:27:09Z) - TinyML NLP Scheme for Semantic Wireless Sentiment Classification with Privacy Preservation [49.801175302937246]
本研究は、エッジデバイスにプライバシ保護、エネルギー効率の高いNLPモデルをデプロイする際の洞察を提供する。
セマンティックスプリットラーニング(SL)を,エネルギー効率,プライバシ保護,小型機械学習(TinyML)フレームワークとして導入する。
その結果,FLの4倍,CLの約18倍の再現誤差の増加により,SLは計算能力とCO2排出量を著しく低減し,プライバシーの向上を図った。
論文 参考訳(メタデータ) (2024-11-09T21:26:59Z) - FedBug: A Bottom-Up Gradual Unfreezing Framework for Federated Learning [36.18217687935658]
Federated Learning(FL)は、複数のクライアントが共有モデルにコントリビュート可能な、協調的なトレーニングフレームワークを提供する。
ローカルデータセットの異種性のため、更新されたクライアントモデルは、クライアントドリフトの問題として知られる、互いにオーバーフィットし、分岐する可能性がある。
クライアントのドリフトを効果的に軽減する新しいFLフレームワークであるFedBugを提案する。
論文 参考訳(メタデータ) (2023-07-19T05:44:35Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
我々は,フェデレーション学習のための新しいプライバシ保護手法であるFedLAP-DPを提案する。
公式なプライバシー分析は、FedLAP-DPが典型的な勾配共有方式と同じプライバシーコストを発生させることを示している。
提案手法は, 通常の勾配共有法に比べて高速な収束速度を示す。
論文 参考訳(メタデータ) (2023-02-02T12:56:46Z) - On the Importance and Applicability of Pre-Training for Federated
Learning [28.238484580662785]
我々は,連合学習のための事前学習を体系的に研究する。
事前学習はFLを改善するだけでなく,その精度のギャップを集中学習に埋めることもできる。
本論文は,FLに対する事前学習の効果を解明する試みとしてまとめる。
論文 参考訳(メタデータ) (2022-06-23T06:02:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。