論文の概要: SkillJect: Automating Stealthy Skill-Based Prompt Injection for Coding Agents with Trace-Driven Closed-Loop Refinement
- arxiv url: http://arxiv.org/abs/2602.14211v1
- Date: Sun, 15 Feb 2026 16:09:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-17 16:22:49.740537
- Title: SkillJect: Automating Stealthy Skill-Based Prompt Injection for Coding Agents with Trace-Driven Closed-Loop Refinement
- Title(参考訳): SkillJect: トレース駆動クローズドループリファインメントを用いたコーディングエージェントのためのステルススキルベースプロンプトインジェクションの自動化
- Authors: Xiaojun Jia, Jie Liao, Simeng Qin, Jindong Gu, Wenqi Ren, Xiaochun Cao, Yang Liu, Philip Torr,
- Abstract要約: エージェントスキルに適したステルスプロンプトインジェクションのための自動フレームワークを提案する。
フレームワークは、明示的なステルス制約の下でインジェクションスキルを合成するアタックエージェント、インジェクションされたスキルを使用してタスクを実行するコードエージェント、アクショントレースをログする評価エージェントの3つのエージェントでクローズドループを形成する。
本手法は,現実的な環境下で高い攻撃成功率を達成する。
- 参考スコア(独自算出の注目度): 120.52289344734415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agent skills are becoming a core abstraction in coding agents, packaging long-form instructions and auxiliary scripts to extend tool-augmented behaviors. This abstraction introduces an under-measured attack surface: skill-based prompt injection, where poisoned skills can steer agents away from user intent and safety policies. In practice, naive injections often fail because the malicious intent is too explicit or drifts too far from the original skill, leading agents to ignore or refuse them; existing attacks are also largely hand-crafted. We propose the first automated framework for stealthy prompt injection tailored to agent skills. The framework forms a closed loop with three agents: an Attack Agent that synthesizes injection skills under explicit stealth constraints, a Code Agent that executes tasks using the injected skills in a realistic tool environment, and an Evaluate Agent that logs action traces (e.g., tool calls and file operations) and verifies whether targeted malicious behaviors occurred. We also propose a malicious payload hiding strategy that conceals adversarial operations in auxiliary scripts while injecting optimized inducement prompts to trigger tool execution. Extensive experiments across diverse coding-agent settings and real-world software engineering tasks show that our method consistently achieves high attack success rates under realistic settings.
- Abstract(参考訳): エージェントスキルは、コーディングエージェントの中核的な抽象化となり、ツール拡張された振る舞いを拡張するために、長文の命令と補助スクリプトをパッケージ化している。
スキルベースのプロンプトインジェクションでは、有害なスキルがエージェントをユーザ意図や安全ポリシーから遠ざけることができる。
実際には、悪意のある意図が露骨すぎるか、元のスキルから遠ざかっているため、エージェントがそれを無視したり拒否したりするため、ナイーブ・インジェクションは失敗することが多い。
エージェントスキルに適したステルスシープロンプトインジェクションのための,最初の自動フレームワークを提案する。
明示的なステルス制約の下でインジェクションスキルを合成するアタックエージェント、現実的なツール環境でインジェクションスキルを使用してタスクを実行するコードエージェント、アクショントレース(例えば、ツールコールやファイル操作)をログし、ターゲットとなる悪意のある動作が発生したかどうかを検証する評価エージェントである。
また,ツールの実行をトリガーする誘導プロンプトを注入しながら,補助スクリプトの敵操作を隠蔽する悪意のあるペイロード隠蔽戦略を提案する。
多様なコーディングエージェント設定と実世界のソフトウェアエンジニアリングタスクにわたる大規模な実験は、我々の手法が現実的な設定下で高い攻撃成功率を継続的に達成していることを示している。
関連論文リスト
- MUZZLE: Adaptive Agentic Red-Teaming of Web Agents Against Indirect Prompt Injection Attacks [10.431616150153992]
MUZZLEは、間接的なプロンプトインジェクション攻撃に対するWebエージェントのセキュリティを評価する自動化フレームワークである。
エージェントの観察された実行軌跡に基づいて攻撃戦略を適用し、失敗した実行からのフィードバックを使用して攻撃を反復的に洗練する。
MUZZLEは、機密性、可用性、プライバシ特性に反する10の敵目標を持つ4つのWebアプリケーションに対する37の新たな攻撃を効果的に発見する。
論文 参考訳(メタデータ) (2026-02-09T21:46:18Z) - CausalArmor: Efficient Indirect Prompt Injection Guardrails via Causal Attribution [49.689452243966315]
ツールコール機能を備えたAIエージェントは、IPI(Indirect Prompt Injection)攻撃の影響を受けやすい。
本稿では,選択防衛フレームワークCausalArmorを提案する。
AgentDojoとDoomArenaの実験は、CausalArmorが攻撃的な防御のセキュリティと一致することを示した。
論文 参考訳(メタデータ) (2026-02-08T11:34:08Z) - Defense Against Indirect Prompt Injection via Tool Result Parsing [5.69701430275527]
LLMエージェントは間接的なプロンプトインジェクションからエスカレートする脅威に直面している。
この脆弱性は、エージェントが物理的な環境をより直接的に制御するようになると、重大なリスクをもたらす。
そこで本稿では,LLMに対してツール解析による正確なデータを提供するとともに,注入された悪意のあるコードを効果的にフィルタリングする手法を提案する。
論文 参考訳(メタデータ) (2026-01-08T10:21:56Z) - Malice in Agentland: Down the Rabbit Hole of Backdoors in the AI Supply Chain [82.98626829232899]
自分自身のインタラクションからのデータに対する微調整のAIエージェントは、AIサプライチェーン内の重要なセキュリティ脆弱性を導入している。
敵は容易にデータ収集パイプラインに毒を盛り、検出しにくいバックドアを埋め込むことができる。
論文 参考訳(メタデータ) (2025-10-03T12:47:21Z) - IPIGuard: A Novel Tool Dependency Graph-Based Defense Against Indirect Prompt Injection in LLM Agents [33.775221377823925]
大規模言語モデル(LLM)エージェントは現実世界のアプリケーションに広くデプロイされており、複雑なタスクのために外部データを検索し操作するためのツールを活用している。
信頼できないデータソースと対話する場合、ツールレスポンスには、エージェントの動作に秘密裏に影響を与え、悪意のある結果をもたらすインジェクションが含まれている可能性がある。
我々はIPIGuardと呼ばれる新しい防御タスク実行パラダイムを提案し、ソースにおける悪意あるツール呼び出しを防止する。
論文 参考訳(メタデータ) (2025-08-21T07:08:16Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Manipulating Multimodal Agents via Cross-Modal Prompt Injection [34.35145839873915]
マルチモーダルエージェントにおいて、これまで見過ごされていた重要なセキュリティ脆弱性を特定します。
攻撃者が複数のモードにまたがって敵の摂動を埋め込む新たな攻撃フレームワークであるCrossInjectを提案する。
本手法は,攻撃成功率を少なくとも30.1%向上させることで,最先端の攻撃よりも優れる。
論文 参考訳(メタデータ) (2025-04-19T16:28:03Z) - AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases [73.04652687616286]
本稿では,RAG とRAG をベースとした LLM エージェントを標的とした最初のバックドア攻撃である AgentPoison を提案する。
従来のバックドア攻撃とは異なり、AgentPoisonは追加のモデルトレーニングや微調整を必要としない。
エージェントごとに、AgentPoisonは平均攻撃成功率を80%以上達成し、良質なパフォーマンスに最小限の影響を与える。
論文 参考訳(メタデータ) (2024-07-17T17:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。