論文の概要: Locally Adaptive Multi-Objective Learning
- arxiv url: http://arxiv.org/abs/2602.14952v1
- Date: Mon, 16 Feb 2026 17:31:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-17 16:22:50.564349
- Title: Locally Adaptive Multi-Objective Learning
- Title(参考訳): 局所適応型多目的学習
- Authors: Jivat Neet Kaur, Isaac Gibbs, Michael I. Jordan,
- Abstract要約: 私たちは、データの分散が時間とともに任意に変化するようなオンライン環境で作業しています。
この問題に対する既存のアプローチは、時間軸全体にわたって目的の集合を最小化することを目的としている。
本稿では,多目的学習法の一部を適応型オンラインアルゴリズムに置き換えることで,局所適応性を実現する方法を検討する。
- 参考スコア(独自算出の注目度): 50.29753546978998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the general problem of learning a predictor that satisfies multiple objectives of interest simultaneously, a broad framework that captures a range of specific learning goals including calibration, regret, and multiaccuracy. We work in an online setting where the data distribution can change arbitrarily over time. Existing approaches to this problem aim to minimize the set of objectives over the entire time horizon in a worst-case sense, and in practice they do not necessarily adapt to distribution shifts. Earlier work has aimed to alleviate this problem by incorporating additional objectives that target local guarantees over contiguous subintervals. Empirical evaluation of these proposals is, however, scarce. In this article, we consider an alternative procedure that achieves local adaptivity by replacing one part of the multi-objective learning method with an adaptive online algorithm. Empirical evaluations on datasets from energy forecasting and algorithmic fairness show that our proposed method improves upon existing approaches and achieves unbiased predictions over subgroups, while remaining robust under distribution shift.
- Abstract(参考訳): 本稿では,複数の関心対象を同時に満たす予測器を学習する際の一般的な課題について考察する。
私たちは、データの分散が時間とともに任意に変化するようなオンライン環境で作業しています。
この問題に対する既存のアプローチは、最悪の場合において、時間的地平線全体における目的の集合を最小化することを目的としており、実際には、必ずしも分布シフトに適応しない。
従来の研究は、連続したサブインターバルに対する局所的な保証を目標とする追加の目的を組み込むことで、この問題を軽減することを目的としていた。
しかし、これらの提案の実証的な評価は乏しい。
本稿では,多目的学習法の一部を適応型オンラインアルゴリズムに置き換えることで,局所適応性を実現する方法を検討する。
エネルギー予測とアルゴリズムフェアネスによるデータセットの実証評価は,提案手法が既存手法を改良し,分布シフトの下で頑健なまま,サブグループに対する偏りのない予測を達成できることを示唆している。
関連論文リスト
- On the Interconnections of Calibration, Quantification, and Classifier Accuracy Prediction under Dataset Shift [58.91436551466064]
本稿では,データセットシフト条件下でのキャリブレーションと定量化の3つの基本問題間の相互接続について検討する。
これらのタスクのいずれか1つに対するオラクルへのアクセスは、他の2つのタスクの解決を可能にすることを示す。
本稿では,他の分野から借用した高度に確立された手法の直接適応に基づく各問題に対する新しい手法を提案する。
論文 参考訳(メタデータ) (2025-05-16T15:42:55Z) - Aligned Multi Objective Optimization [15.404668020811513]
機械学習の実践では、このような衝突が起こらないシナリオが数多く存在する。
近年のマルチタスク学習,強化学習,LLMsトレーニングの成果から,多種多様な関連タスクが,目的物間のパフォーマンスを同時に向上する可能性が示唆された。
我々は、アラインド多目的最適化フレームワークを導入し、この設定のための新しいアルゴリズムを提案し、それらの優れた性能の理論的保証を提供する。
論文 参考訳(メタデータ) (2025-02-19T20:50:03Z) - Adaptive Training Distributions with Scalable Online Bilevel
Optimization [26.029033134519604]
Webスケールコーパスで事前訓練された大規模なニューラルネットワークは、現代の機械学習の中心である。
本研究は,対象とする試験条件を反映したデータのサンプルが少なければ,事前学習分布を変更することを検討する。
本稿では、この設定をオンライン二段階最適化問題として最近定式化したアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-20T18:01:29Z) - Generative multitask learning mitigates target-causing confounding [61.21582323566118]
マルチタスク学習のための因果表現学習のためのシンプルでスケーラブルなアプローチを提案する。
改善は、目標を狙うが入力はしない、観測されていない共同ファウンダーを緩和することによる。
人の属性とタスクノミーのデータセットに対する我々の結果は、事前の確率シフトに対するロバストネスの概念的改善を反映している。
論文 参考訳(メタデータ) (2022-02-08T20:42:14Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - KL Guided Domain Adaptation [88.19298405363452]
ドメイン適応は重要な問題であり、現実世界のアプリケーションにしばしば必要である。
ドメイン適応文学における一般的なアプローチは、ソースとターゲットドメインに同じ分布を持つ入力の表現を学ぶことである。
確率的表現ネットワークにより、KL項はミニバッチサンプルにより効率的に推定できることを示す。
論文 参考訳(メタデータ) (2021-06-14T22:24:23Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
大規模不変な方法で目的の好みを設定することができる多目的強化学習アルゴリズムを提案する。
フレームワーク内で異なる好みを設定することで、非支配的なソリューションの空間を追跡できることを示す。
論文 参考訳(メタデータ) (2020-05-15T13:02:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。