論文の概要: Secure and Energy-Efficient Wireless Agentic AI Networks
- arxiv url: http://arxiv.org/abs/2602.15212v1
- Date: Mon, 16 Feb 2026 21:42:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-18 16:03:17.917588
- Title: Secure and Energy-Efficient Wireless Agentic AI Networks
- Title(参考訳): 安全でエネルギー効率の良い無線エージェントAIネットワーク
- Authors: Yuanyan Song, Kezhi Wang, Xinmian Xu,
- Abstract要約: セキュアな無線エージェントAIネットワークは、1つのスーパーバイザーAIエージェントと、他の複数のAIエージェントで構成される。
エージェントは、協力的推論に参加するために、他のAIエージェントを動的に割り当てる。
選択されていないAIエージェントは、盗聴者の傍受性能を低下させるために友好的なジャマーとして機能する。
- 参考スコア(独自算出の注目度): 12.588984049305866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a secure wireless agentic AI network comprising one supervisor AI agent and multiple other AI agents to provision quality of service (QoS) for users' reasoning tasks while ensuring confidentiality of private knowledge and reasoning outcomes. Specifically, the supervisor AI agent can dynamically assign other AI agents to participate in cooperative reasoning, while the unselected AI agents act as friendly jammers to degrade the eavesdropper's interception performance. To extend the service duration of AI agents, an energy minimization problem is formulated that jointly optimizes AI agent selection, base station (BS) beamforming, and AI agent transmission power, subject to latency and reasoning accuracy constraints. To address the formulated problem, we propose two resource allocation schemes, ASC and LAW, which first decompose it into three sub-problems. Specifically, ASC optimizes each sub-problem iteratively using the proposed alternating direction method of multipliers (ADMM)-based algorithm, semi-definite relaxation (SDR), and successive convex approximation (SCA), while LAW tackles each sub-problem using the proposed large language model (LLM) optimizer within an agentic workflow. The experimental results show that the proposed solutions can reduce network energy consumption by up to 59.1% compared to other benchmark schemes. Furthermore, the proposed schemes are validated using a practical agentic AI system based on Qwen, demonstrating satisfactory reasoning accuracy across various public benchmarks.
- Abstract(参考訳): 本稿では,1人の上司AIエージェントと複数のAIエージェントからなるセキュアな無線エージェントAIネットワークを導入する。
具体的には、監督AIエージェントは、他のAIエージェントを協調推論に参加させるように動的に割り当てることができる一方、選択されていないAIエージェントは、盗聴者の傍受性能を低下させるために友好的なジャマーとして機能する。
AIエージェントの寿命を延ばすため、AIエージェントの選択、ベースステーション(BS)ビームフォーミング、AIエージェントの送信パワーをレイテンシと推論精度の制約の下で共同で最適化するエネルギー最小化問題を定式化した。
定式化問題に対処するため,ASCとLAWという2つの資源割り当て方式を提案し,まずそれを3つのサブプロブレムに分解する。
具体的には、ASCは、提案した乗算器(ADMM)ベースのアルゴリズム、半定値緩和(SDR)、逐次凸近似(SCA)を用いて、各サブプロブレムを反復的に最適化する一方、LAWは提案した大規模言語モデル(LLM)オプティマイザを用いて、エージェントワークフロー内で各サブプロブレムに取り組む。
実験の結果,提案手法は,他のベンチマーク手法と比較してネットワークのエネルギー消費を最大59.1%削減できることがわかった。
さらに、提案手法はQwenに基づく実用的なエージェントAIシステムを用いて検証し、様々な公開ベンチマークで十分な推論精度を示す。
関連論文リスト
- ComAgent: Multi-LLM based Agentic AI Empowered Intelligent Wireless Networks [62.031889234230725]
6Gネットワークは複雑な層間最適化に依存している。
数学の定式化に高レベルの意図を手動で翻訳することは、まだボトルネックである。
我々はマルチLLMエージェントAIフレームワークであるComAgentを紹介する。
論文 参考訳(メタデータ) (2026-01-27T13:43:59Z) - TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems [8.683314804719506]
本稿では,エージェントマルチエージェントシステム(AMAS)における信頼・リスク・セキュリティマネジメント(TRiSM)の構造的分析について述べる。
まず、エージェントAIの概念的基礎を調べ、従来のAIエージェントとアーキテクチャ的区別を強調します。
次に、Textit Explainability、ModelOps、Security、Privacy、Textittheirのガバナンスガバナンスといった重要な柱を中心に構築された、エージェントAIのためのAI TRiSMフレームワークを適応して拡張します。
調整失敗から調整失敗まで、エージェントAIのユニークな脅威と脆弱性を捉えるためにリスク分類法が提案されている。
論文 参考訳(メタデータ) (2025-06-04T16:26:11Z) - The Cost of Dynamic Reasoning: Demystifying AI Agents and Test-Time Scaling from an AI Infrastructure Perspective [3.0868637098088403]
大規模言語モデル(LLM)ベースのAIエージェントは最近、動的推論を採用することで、印象的な汎用性を示した。
本稿では,AIエージェントを包括的に分析し,リソース使用量,遅延動作,エネルギー消費,テストタイムスケーリング戦略を定量化する。
その結果,エージェントは計算量の増加によって精度が向上する一方で,急速に低下するリターン,レイテンシのばらつきの拡大,持続不可能なインフラストラクチャコストに悩まされていることがわかった。
論文 参考訳(メタデータ) (2025-06-04T14:37:54Z) - Scalable, Symbiotic, AI and Non-AI Agent Based Parallel Discrete Event Simulations [0.0]
本稿では,複数のAIエージェントと非AIエージェントを組み合わせた並列離散イベントシミュレーション(PDES)手法を提案する。
我々は、4つの異なるドメインから4つの問題を解き、その結果をAIモデルだけで比較することで、我々のアプローチを評価する。
その結果,バニラモデルの精度が23%未満であるため,アプローチ全体の精度は68%であった。
論文 参考訳(メタデータ) (2025-05-28T17:50:01Z) - Bi-LSTM based Multi-Agent DRL with Computation-aware Pruning for Agent Twins Migration in Vehicular Embodied AI Networks [20.574619097682923]
インテリジェントトランスポートでは、大型言語モデルと組み込み人工知能(AI)の組み合わせにより、Vehicular Embodied AI Network(VEAN)が生成される。
VEANでは、自律走行車(AV)が典型的なエージェントであり、局所的な高度なAIアプリケーションは車載型AIエージェントとして定義される。
レイテンシとリソースの制約のため、車載型AIエージェント上で動作するローカルAIアプリケーションとサービスを移行する必要がある。
論文 参考訳(メタデータ) (2025-05-09T18:52:26Z) - Aerial Secure Collaborative Communications under Eavesdropper Collusion in Low-altitude Economy: A Generative Swarm Intelligent Approach [84.20358039333756]
本研究では,AAV群に分散コラボレーティブビームフォーミング(DCB)を導入し,対応する信号分布を制御して盗聴者の共謀を処理した。
両方向の秘密保持能力と最大サイドローブレベルを最小化して、未知の盗聴者からの情報漏洩を回避する。
本稿では,より少ないオーバーヘッドで問題を解決するために,新しいジェネレーティブ・スウォーム・インテリジェンス(GenSI)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-02T04:02:58Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - Closing the Responsibility Gap in AI-based Network Management: An Intelligent Audit System Approach [0.0]
既存のネットワークパラダイムは、AI(Artificial Intelligence)ベースのネットワーク管理ツールを使用することで、ダウンタイムの低減と、より高いQuality of Experience(QoE)を実現している。
これらのAI管理ツールは、ネットワーク条件の変更に対する自動応答を可能にし、オペレータの運用コストを低減し、全体的なパフォーマンスを改善する。
AIベースの管理ツールを採用することでネットワーク全体のパフォーマンスが向上する一方で、人間の監督、プライバシー侵害、アルゴリズムバイアス、モデル不正確性といった課題も導入されている。
論文 参考訳(メタデータ) (2025-02-08T15:30:25Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
インテリジェント反射面(IRS)支援無人航空機(UAV)通信は、地上基地局の負荷を低コストで軽減することが期待されている。
既存の研究は主に、複数のIRSではなく単一のIRSの配置とリソース割り当てに焦点を当てている。
我々は,共同IRSユーザアソシエーションのための新しい最適化アルゴリズム,UAVの軌道最適化,逐次干渉キャンセル(SIC)復号命令スケジューリング,電力割り当てを提案する。
論文 参考訳(メタデータ) (2023-12-08T01:57:10Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。